Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,6 @@ import gradio as gr
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
from functools import partial
|
13 |
-
import time
|
14 |
-
import csv
|
15 |
-
from datetime import datetime
|
16 |
-
import threading
|
17 |
-
import random
|
18 |
|
19 |
# Configure logging
|
20 |
logging.basicConfig(level=logging.INFO)
|
@@ -29,160 +24,6 @@ CONFIDENCE_THRESHOLD = 0.65
|
|
29 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
30 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
31 |
|
32 |
-
class CSVLogger:
|
33 |
-
def __init__(self, log_dir="."):
|
34 |
-
"""Initialize the CSV logger.
|
35 |
-
|
36 |
-
Args:
|
37 |
-
log_dir: Directory to store CSV log files
|
38 |
-
"""
|
39 |
-
self.log_dir = log_dir
|
40 |
-
os.makedirs(log_dir, exist_ok=True)
|
41 |
-
|
42 |
-
# Create monthly CSV files
|
43 |
-
current_month = datetime.now().strftime('%Y-%m')
|
44 |
-
self.metrics_path = os.path.join(log_dir, f"metrics_{current_month}.csv")
|
45 |
-
self.text_path = os.path.join(log_dir, f"text_data_{current_month}.csv")
|
46 |
-
|
47 |
-
# Define headers
|
48 |
-
self.metrics_headers = [
|
49 |
-
'entry_id', 'timestamp', 'word_count', 'mode', 'prediction',
|
50 |
-
'confidence', 'prediction_time_seconds', 'num_sentences'
|
51 |
-
]
|
52 |
-
|
53 |
-
self.text_headers = ['entry_id', 'timestamp', 'text']
|
54 |
-
|
55 |
-
# Initialize the files if they don't exist
|
56 |
-
self._initialize_files()
|
57 |
-
|
58 |
-
# Create locks for thread safety
|
59 |
-
self.metrics_lock = threading.Lock()
|
60 |
-
self.text_lock = threading.Lock()
|
61 |
-
|
62 |
-
print(f"CSV logger initialized with files at: {os.path.abspath(self.metrics_path)}")
|
63 |
-
|
64 |
-
def _initialize_files(self):
|
65 |
-
"""Create the CSV files with headers if they don't exist."""
|
66 |
-
# Initialize metrics file
|
67 |
-
if not os.path.exists(self.metrics_path):
|
68 |
-
with open(self.metrics_path, 'w', newline='') as f:
|
69 |
-
writer = csv.writer(f)
|
70 |
-
writer.writerow(self.metrics_headers)
|
71 |
-
|
72 |
-
# Initialize text data file
|
73 |
-
if not os.path.exists(self.text_path):
|
74 |
-
with open(self.text_path, 'w', newline='') as f:
|
75 |
-
writer = csv.writer(f)
|
76 |
-
writer.writerow(self.text_headers)
|
77 |
-
|
78 |
-
def log_prediction(self, prediction_data, store_text=True):
|
79 |
-
"""Log prediction data to CSV files.
|
80 |
-
|
81 |
-
Args:
|
82 |
-
prediction_data: Dictionary containing prediction metrics
|
83 |
-
store_text: Whether to store the full text
|
84 |
-
"""
|
85 |
-
# Generate a unique entry ID
|
86 |
-
entry_id = f"{datetime.now().strftime('%Y%m%d%H%M%S')}_{random.randint(1000, 9999)}"
|
87 |
-
|
88 |
-
# Extract text if present
|
89 |
-
text = prediction_data.pop('text', None) if store_text else None
|
90 |
-
|
91 |
-
# Ensure timestamp is present
|
92 |
-
if 'timestamp' not in prediction_data:
|
93 |
-
prediction_data['timestamp'] = datetime.now().isoformat()
|
94 |
-
|
95 |
-
# Add entry_id to metrics data
|
96 |
-
metrics_data = prediction_data.copy()
|
97 |
-
metrics_data['entry_id'] = entry_id
|
98 |
-
|
99 |
-
# Start a thread to write data
|
100 |
-
thread = threading.Thread(
|
101 |
-
target=self._write_to_csv,
|
102 |
-
args=(metrics_data, text, entry_id, store_text)
|
103 |
-
)
|
104 |
-
thread.daemon = True
|
105 |
-
thread.start()
|
106 |
-
|
107 |
-
def _write_to_csv(self, metrics_data, text, entry_id, store_text):
|
108 |
-
"""Write data to CSV files with retry mechanism."""
|
109 |
-
max_retries = 5
|
110 |
-
retry_delay = 0.5
|
111 |
-
|
112 |
-
# Write metrics data
|
113 |
-
for attempt in range(max_retries):
|
114 |
-
try:
|
115 |
-
with self.metrics_lock:
|
116 |
-
with open(self.metrics_path, 'a', newline='') as f:
|
117 |
-
writer = csv.writer(f)
|
118 |
-
# Prepare row in the correct order based on headers
|
119 |
-
row = [
|
120 |
-
metrics_data.get('entry_id', ''),
|
121 |
-
metrics_data.get('timestamp', ''),
|
122 |
-
metrics_data.get('word_count', 0),
|
123 |
-
metrics_data.get('mode', ''),
|
124 |
-
metrics_data.get('prediction', ''),
|
125 |
-
metrics_data.get('confidence', 0.0),
|
126 |
-
metrics_data.get('prediction_time_seconds', 0.0),
|
127 |
-
metrics_data.get('num_sentences', 0)
|
128 |
-
]
|
129 |
-
writer.writerow(row)
|
130 |
-
print(f"Successfully wrote metrics to CSV, entry_id: {entry_id}")
|
131 |
-
break
|
132 |
-
except Exception as e:
|
133 |
-
print(f"Error writing metrics to CSV (attempt {attempt+1}/{max_retries}): {e}")
|
134 |
-
time.sleep(retry_delay * (attempt + 1))
|
135 |
-
else:
|
136 |
-
# If all retries fail, write to backup file
|
137 |
-
backup_path = os.path.join(self.log_dir, f"metrics_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
|
138 |
-
try:
|
139 |
-
with open(backup_path, 'w', newline='') as f:
|
140 |
-
writer = csv.writer(f)
|
141 |
-
writer.writerow(self.metrics_headers)
|
142 |
-
row = [
|
143 |
-
metrics_data.get('entry_id', ''),
|
144 |
-
metrics_data.get('timestamp', ''),
|
145 |
-
metrics_data.get('word_count', 0),
|
146 |
-
metrics_data.get('mode', ''),
|
147 |
-
metrics_data.get('prediction', ''),
|
148 |
-
metrics_data.get('confidence', 0.0),
|
149 |
-
metrics_data.get('prediction_time_seconds', 0.0),
|
150 |
-
metrics_data.get('num_sentences', 0)
|
151 |
-
]
|
152 |
-
writer.writerow(row)
|
153 |
-
print(f"Wrote metrics backup to {backup_path}")
|
154 |
-
except Exception as e:
|
155 |
-
print(f"Error writing metrics backup: {e}")
|
156 |
-
|
157 |
-
# Write text data if requested
|
158 |
-
if store_text and text:
|
159 |
-
for attempt in range(max_retries):
|
160 |
-
try:
|
161 |
-
with self.text_lock:
|
162 |
-
with open(self.text_path, 'a', newline='') as f:
|
163 |
-
writer = csv.writer(f)
|
164 |
-
# Handle potential newlines in text by replacing them
|
165 |
-
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
|
166 |
-
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
|
167 |
-
print(f"Successfully wrote text data to CSV, entry_id: {entry_id}")
|
168 |
-
break
|
169 |
-
except Exception as e:
|
170 |
-
print(f"Error writing text data to CSV (attempt {attempt+1}/{max_retries}): {e}")
|
171 |
-
time.sleep(retry_delay * (attempt + 1))
|
172 |
-
else:
|
173 |
-
# If all retries fail, write to backup file
|
174 |
-
backup_path = os.path.join(self.log_dir, f"text_backup_{datetime.now().strftime('%Y%m%d%H%M%S')}.csv")
|
175 |
-
try:
|
176 |
-
with open(backup_path, 'w', newline='') as f:
|
177 |
-
writer = csv.writer(f)
|
178 |
-
writer.writerow(self.text_headers)
|
179 |
-
safe_text = text.replace('\n', ' ').replace('\r', ' ') if text else ''
|
180 |
-
writer.writerow([entry_id, metrics_data.get('timestamp', ''), safe_text])
|
181 |
-
print(f"Wrote text data backup to {backup_path}")
|
182 |
-
except Exception as e:
|
183 |
-
print(f"Error writing text data backup: {e}")
|
184 |
-
|
185 |
-
|
186 |
class TextWindowProcessor:
|
187 |
def __init__(self):
|
188 |
try:
|
@@ -335,6 +176,100 @@ class TextClassifier:
|
|
335 |
'num_windows': len(predictions)
|
336 |
}
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
def detailed_scan(self, text: str) -> Dict:
|
339 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
340 |
# Clean up trailing whitespace
|
@@ -485,23 +420,8 @@ class TextClassifier:
|
|
485 |
'num_sentences': num_sentences
|
486 |
}
|
487 |
|
488 |
-
# Initialize the logger
|
489 |
-
csv_logger = CSVLogger(log_dir=".")
|
490 |
-
|
491 |
-
# Add file listing endpoint for debugging
|
492 |
-
def list_files():
|
493 |
-
"""List all files in the current directory and subdirectories."""
|
494 |
-
all_files = []
|
495 |
-
for root, dirs, files in os.walk('.'):
|
496 |
-
for file in files:
|
497 |
-
all_files.append(os.path.join(root, file))
|
498 |
-
return all_files
|
499 |
-
|
500 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
501 |
"""Analyze text using specified mode and return formatted results."""
|
502 |
-
# Start timing the prediction
|
503 |
-
start_time = time.time()
|
504 |
-
|
505 |
# Count words in the text
|
506 |
word_count = len(text.split())
|
507 |
|
@@ -512,58 +432,31 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
512 |
|
513 |
if mode == "quick":
|
514 |
result = classifier.quick_scan(text)
|
515 |
-
prediction = result['prediction']
|
516 |
-
confidence = result['confidence']
|
517 |
-
num_windows = result['num_windows']
|
518 |
|
519 |
quick_analysis = f"""
|
520 |
-
PREDICTION: {prediction.upper()}
|
521 |
-
Confidence: {confidence*100:.1f}%
|
522 |
-
Windows analyzed: {num_windows}
|
523 |
"""
|
524 |
|
525 |
# Add note if mode was switched
|
526 |
if original_mode == "detailed":
|
527 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
528 |
|
529 |
-
|
530 |
text, # No highlighting in quick mode
|
531 |
"Quick scan mode - no sentence-level analysis available",
|
532 |
quick_analysis
|
533 |
)
|
534 |
-
|
535 |
-
# End timing
|
536 |
-
end_time = time.time()
|
537 |
-
prediction_time = end_time - start_time
|
538 |
-
|
539 |
-
# Log the data
|
540 |
-
log_data = {
|
541 |
-
"timestamp": datetime.now().isoformat(),
|
542 |
-
"word_count": word_count,
|
543 |
-
"mode": mode,
|
544 |
-
"prediction": prediction,
|
545 |
-
"confidence": confidence,
|
546 |
-
"prediction_time_seconds": prediction_time,
|
547 |
-
"num_sentences": 0, # No sentence analysis in quick mode
|
548 |
-
"text": text
|
549 |
-
}
|
550 |
-
|
551 |
-
# Log to CSV
|
552 |
-
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
|
553 |
-
csv_logger.log_prediction(log_data)
|
554 |
-
|
555 |
else:
|
556 |
analysis = classifier.detailed_scan(text)
|
557 |
-
prediction = analysis['overall_prediction']['prediction']
|
558 |
-
confidence = analysis['overall_prediction']['confidence']
|
559 |
-
num_sentences = analysis['overall_prediction']['num_sentences']
|
560 |
|
561 |
detailed_analysis = []
|
562 |
for pred in analysis['sentence_predictions']:
|
563 |
-
|
564 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
565 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
566 |
-
detailed_analysis.append(f"Confidence: {
|
567 |
detailed_analysis.append("-" * 50)
|
568 |
|
569 |
final_pred = analysis['overall_prediction']
|
@@ -573,33 +466,11 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
573 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
574 |
"""
|
575 |
|
576 |
-
|
577 |
analysis['highlighted_text'],
|
578 |
"\n".join(detailed_analysis),
|
579 |
overall_result
|
580 |
)
|
581 |
-
|
582 |
-
# End timing
|
583 |
-
end_time = time.time()
|
584 |
-
prediction_time = end_time - start_time
|
585 |
-
|
586 |
-
# Log the data
|
587 |
-
log_data = {
|
588 |
-
"timestamp": datetime.now().isoformat(),
|
589 |
-
"word_count": word_count,
|
590 |
-
"mode": mode,
|
591 |
-
"prediction": prediction,
|
592 |
-
"confidence": confidence,
|
593 |
-
"prediction_time_seconds": prediction_time,
|
594 |
-
"num_sentences": num_sentences,
|
595 |
-
"text": text
|
596 |
-
}
|
597 |
-
|
598 |
-
# Log to CSV
|
599 |
-
print(f"Logging prediction data: word_count={word_count}, mode={mode}, prediction={prediction}")
|
600 |
-
csv_logger.log_prediction(log_data)
|
601 |
-
|
602 |
-
return output
|
603 |
|
604 |
# Initialize the classifier globally
|
605 |
classifier = TextClassifier()
|
@@ -626,7 +497,7 @@ demo = gr.Interface(
|
|
626 |
gr.Textbox(label="Overall Result", lines=4)
|
627 |
],
|
628 |
title="AI Text Detector",
|
629 |
-
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.
|
630 |
api_name="predict",
|
631 |
flagging_mode="never"
|
632 |
)
|
@@ -640,26 +511,8 @@ app.add_middleware(
|
|
640 |
allow_headers=["*"],
|
641 |
)
|
642 |
|
643 |
-
# Add file listing endpoint for debugging
|
644 |
-
@app.get("/list_files")
|
645 |
-
async def get_files():
|
646 |
-
return {"files": list_files()}
|
647 |
-
|
648 |
# Ensure CORS is applied before launching
|
649 |
if __name__ == "__main__":
|
650 |
-
# Create empty CSV files if they don't exist
|
651 |
-
current_month = datetime.now().strftime('%Y-%m')
|
652 |
-
metrics_path = f"metrics_{current_month}.csv"
|
653 |
-
text_path = f"text_data_{current_month}.csv"
|
654 |
-
|
655 |
-
print(f"Current directory: {os.getcwd()}")
|
656 |
-
print(f"Looking for CSV files: {metrics_path}, {text_path}")
|
657 |
-
|
658 |
-
if not os.path.exists(metrics_path):
|
659 |
-
print(f"Creating metrics CSV file: {metrics_path}")
|
660 |
-
if not os.path.exists(text_path):
|
661 |
-
print(f"Creating text data CSV file: {text_path}")
|
662 |
-
|
663 |
demo.queue()
|
664 |
demo.launch(
|
665 |
server_name="0.0.0.0",
|
|
|
10 |
from fastapi.middleware.cors import CORSMiddleware
|
11 |
from concurrent.futures import ThreadPoolExecutor
|
12 |
from functools import partial
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
# Configure logging
|
15 |
logging.basicConfig(level=logging.INFO)
|
|
|
24 |
BATCH_SIZE = 8 # Reduced batch size for CPU
|
25 |
MAX_WORKERS = 4 # Number of worker threads for processing
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
class TextWindowProcessor:
|
28 |
def __init__(self):
|
29 |
try:
|
|
|
176 |
'num_windows': len(predictions)
|
177 |
}
|
178 |
|
179 |
+
# def detailed_scan(self, text: str) -> Dict:
|
180 |
+
# """Original prediction method with modified window handling"""
|
181 |
+
# if self.model is None or self.tokenizer is None:
|
182 |
+
# self.load_model()
|
183 |
+
|
184 |
+
# self.model.eval()
|
185 |
+
# sentences = self.processor.split_into_sentences(text)
|
186 |
+
# if not sentences:
|
187 |
+
# return {}
|
188 |
+
|
189 |
+
# # Create centered windows for each sentence
|
190 |
+
# windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
191 |
+
|
192 |
+
# # Track scores for each sentence
|
193 |
+
# sentence_appearances = {i: 0 for i in range(len(sentences))}
|
194 |
+
# sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
195 |
+
|
196 |
+
# # Process windows in batches
|
197 |
+
# batch_size = 16
|
198 |
+
# for i in range(0, len(windows), batch_size):
|
199 |
+
# batch_windows = windows[i:i + batch_size]
|
200 |
+
# batch_indices = window_sentence_indices[i:i + batch_size]
|
201 |
+
|
202 |
+
# inputs = self.tokenizer(
|
203 |
+
# batch_windows,
|
204 |
+
# truncation=True,
|
205 |
+
# padding=True,
|
206 |
+
# max_length=MAX_LENGTH,
|
207 |
+
# return_tensors="pt"
|
208 |
+
# ).to(self.device)
|
209 |
+
|
210 |
+
# with torch.no_grad():
|
211 |
+
# outputs = self.model(**inputs)
|
212 |
+
# probs = F.softmax(outputs.logits, dim=-1)
|
213 |
+
|
214 |
+
# # Attribute predictions more carefully
|
215 |
+
# for window_idx, indices in enumerate(batch_indices):
|
216 |
+
# center_idx = len(indices) // 2
|
217 |
+
# center_weight = 0.7 # Higher weight for center sentence
|
218 |
+
# edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
219 |
+
|
220 |
+
# for pos, sent_idx in enumerate(indices):
|
221 |
+
# # Apply higher weight to center sentence
|
222 |
+
# weight = center_weight if pos == center_idx else edge_weight
|
223 |
+
# sentence_appearances[sent_idx] += weight
|
224 |
+
# sentence_scores[sent_idx]['human_prob'] += weight * probs[window_idx][1].item()
|
225 |
+
# sentence_scores[sent_idx]['ai_prob'] += weight * probs[window_idx][0].item()
|
226 |
+
|
227 |
+
# del inputs, outputs, probs
|
228 |
+
# if torch.cuda.is_available():
|
229 |
+
# torch.cuda.empty_cache()
|
230 |
+
|
231 |
+
# # Calculate final predictions
|
232 |
+
# sentence_predictions = []
|
233 |
+
# for i in range(len(sentences)):
|
234 |
+
# if sentence_appearances[i] > 0:
|
235 |
+
# human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
236 |
+
# ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
237 |
+
|
238 |
+
# # Only apply minimal smoothing at prediction boundaries
|
239 |
+
# if i > 0 and i < len(sentences) - 1:
|
240 |
+
# prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
241 |
+
# prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
242 |
+
# next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
243 |
+
# next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
244 |
+
|
245 |
+
# # Check if we're at a prediction boundary
|
246 |
+
# current_pred = 'human' if human_prob > ai_prob else 'ai'
|
247 |
+
# prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
248 |
+
# next_pred = 'human' if next_human > next_ai else 'ai'
|
249 |
+
|
250 |
+
# if current_pred != prev_pred or current_pred != next_pred:
|
251 |
+
# # Small adjustment at boundaries
|
252 |
+
# smooth_factor = 0.1
|
253 |
+
# human_prob = (human_prob * (1 - smooth_factor) +
|
254 |
+
# (prev_human + next_human) * smooth_factor / 2)
|
255 |
+
# ai_prob = (ai_prob * (1 - smooth_factor) +
|
256 |
+
# (prev_ai + next_ai) * smooth_factor / 2)
|
257 |
+
|
258 |
+
# sentence_predictions.append({
|
259 |
+
# 'sentence': sentences[i],
|
260 |
+
# 'human_prob': human_prob,
|
261 |
+
# 'ai_prob': ai_prob,
|
262 |
+
# 'prediction': 'human' if human_prob > ai_prob else 'ai',
|
263 |
+
# 'confidence': max(human_prob, ai_prob)
|
264 |
+
# })
|
265 |
+
|
266 |
+
# return {
|
267 |
+
# 'sentence_predictions': sentence_predictions,
|
268 |
+
# 'highlighted_text': self.format_predictions_html(sentence_predictions),
|
269 |
+
# 'full_text': text,
|
270 |
+
# 'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
271 |
+
# }
|
272 |
+
|
273 |
def detailed_scan(self, text: str) -> Dict:
|
274 |
"""Perform a detailed scan with improved sentence-level analysis."""
|
275 |
# Clean up trailing whitespace
|
|
|
420 |
'num_sentences': num_sentences
|
421 |
}
|
422 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
423 |
def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
424 |
"""Analyze text using specified mode and return formatted results."""
|
|
|
|
|
|
|
425 |
# Count words in the text
|
426 |
word_count = len(text.split())
|
427 |
|
|
|
432 |
|
433 |
if mode == "quick":
|
434 |
result = classifier.quick_scan(text)
|
|
|
|
|
|
|
435 |
|
436 |
quick_analysis = f"""
|
437 |
+
PREDICTION: {result['prediction'].upper()}
|
438 |
+
Confidence: {result['confidence']*100:.1f}%
|
439 |
+
Windows analyzed: {result['num_windows']}
|
440 |
"""
|
441 |
|
442 |
# Add note if mode was switched
|
443 |
if original_mode == "detailed":
|
444 |
quick_analysis += f"\n\nNote: Switched to quick mode because text contains only {word_count} words. Minimum 200 words required for detailed analysis."
|
445 |
|
446 |
+
return (
|
447 |
text, # No highlighting in quick mode
|
448 |
"Quick scan mode - no sentence-level analysis available",
|
449 |
quick_analysis
|
450 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
451 |
else:
|
452 |
analysis = classifier.detailed_scan(text)
|
|
|
|
|
|
|
453 |
|
454 |
detailed_analysis = []
|
455 |
for pred in analysis['sentence_predictions']:
|
456 |
+
confidence = pred['confidence'] * 100
|
457 |
detailed_analysis.append(f"Sentence: {pred['sentence']}")
|
458 |
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
|
459 |
+
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
|
460 |
detailed_analysis.append("-" * 50)
|
461 |
|
462 |
final_pred = analysis['overall_prediction']
|
|
|
466 |
Number of sentences analyzed: {final_pred['num_sentences']}
|
467 |
"""
|
468 |
|
469 |
+
return (
|
470 |
analysis['highlighted_text'],
|
471 |
"\n".join(detailed_analysis),
|
472 |
overall_result
|
473 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
474 |
|
475 |
# Initialize the classifier globally
|
476 |
classifier = TextClassifier()
|
|
|
497 |
gr.Textbox(label="Overall Result", lines=4)
|
498 |
],
|
499 |
title="AI Text Detector",
|
500 |
+
description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
|
501 |
api_name="predict",
|
502 |
flagging_mode="never"
|
503 |
)
|
|
|
511 |
allow_headers=["*"],
|
512 |
)
|
513 |
|
|
|
|
|
|
|
|
|
|
|
514 |
# Ensure CORS is applied before launching
|
515 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
demo.queue()
|
517 |
demo.launch(
|
518 |
server_name="0.0.0.0",
|