ApsidalSolid4 commited on
Commit
61a5e5f
·
verified ·
1 Parent(s): 024e85c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +415 -52
app.py CHANGED
@@ -18,6 +18,10 @@ from openpyxl.utils import get_column_letter
18
  from io import BytesIO
19
  import base64
20
  import hashlib
 
 
 
 
21
 
22
  # Configure logging
23
  logging.basicConfig(level=logging.INFO)
@@ -32,6 +36,17 @@ CONFIDENCE_THRESHOLD = 0.65
32
  BATCH_SIZE = 8 # Reduced batch size for CPU
33
  MAX_WORKERS = 4 # Number of worker threads for processing
34
 
 
 
 
 
 
 
 
 
 
 
 
35
  # Get password hash from environment variable (more secure)
36
  ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
37
 
@@ -41,10 +56,168 @@ if not ADMIN_PASSWORD_HASH:
41
  # Excel file path for logs
42
  EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  def is_admin_password(input_text: str) -> bool:
45
  """
46
  Check if the input text matches the admin password using secure hash comparison.
47
- This prevents the password from being visible in the source code.
48
  """
49
  # Hash the input text
50
  input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
@@ -105,11 +278,6 @@ class TextWindowProcessor:
105
 
106
  class TextClassifier:
107
  def __init__(self):
108
- # Set thread configuration before any model loading or parallel work
109
- if not torch.cuda.is_available():
110
- torch.set_num_threads(MAX_WORKERS)
111
- torch.set_num_interop_threads(MAX_WORKERS)
112
-
113
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
114
  self.model_name = MODEL_NAME
115
  self.tokenizer = None
@@ -253,7 +421,7 @@ class TextClassifier:
253
  for window_idx, indices in enumerate(batch_indices):
254
  center_idx = len(indices) // 2
255
  center_weight = 0.7 # Higher weight for center sentence
256
- edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
257
 
258
  for pos, sent_idx in enumerate(indices):
259
  # Apply higher weight to center sentence
@@ -276,10 +444,10 @@ class TextClassifier:
276
 
277
  # Apply minimal smoothing at prediction boundaries
278
  if i > 0 and i < len(sentences) - 1:
279
- prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
280
- prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
281
- next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
282
- next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
283
 
284
  # Check if we're at a prediction boundary
285
  current_pred = 'human' if human_prob > ai_prob else 'ai'
@@ -354,6 +522,105 @@ class TextClassifier:
354
  'num_sentences': num_sentences
355
  }
356
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357
  def initialize_excel_log():
358
  """Initialize the Excel log file if it doesn't exist."""
359
  if not os.path.exists(EXCEL_LOG_PATH):
@@ -381,6 +648,7 @@ def initialize_excel_log():
381
  wb.save(EXCEL_LOG_PATH)
382
  logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
383
 
 
384
  def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
385
  """Log prediction data to an Excel file in the /tmp directory."""
386
  # Initialize the Excel file if it doesn't exist
@@ -423,6 +691,7 @@ def log_prediction_data(input_text, word_count, prediction, confidence, executio
423
  logger.error(f"Error logging prediction data to Excel: {str(e)}")
424
  return False
425
 
 
426
  def get_logs_as_base64():
427
  """Read the Excel logs file and return as base64 for downloading."""
428
  if not os.path.exists(EXCEL_LOG_PATH):
@@ -441,6 +710,7 @@ def get_logs_as_base64():
441
  logger.error(f"Error reading Excel logs: {str(e)}")
442
  return None
443
 
 
444
  def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
445
  """Analyze text using specified mode and return formatted results."""
446
  # Check if the input text matches the admin password using secure comparison
@@ -563,51 +833,144 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
563
  # Initialize the classifier globally
564
  classifier = TextClassifier()
565
 
566
- # Create Gradio interface
567
- demo = gr.Interface(
568
- fn=lambda text, mode: analyze_text(text, mode, classifier),
569
- inputs=[
570
- gr.Textbox(
571
- lines=8,
572
- placeholder="Enter text to analyze...",
573
- label="Input Text"
574
- ),
575
- gr.Radio(
576
- choices=["quick", "detailed"],
577
- value="quick",
578
- label="Analysis Mode",
579
- info="Quick mode for faster analysis, Detailed mode for sentence-level analysis"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580
  )
581
- ],
582
- outputs=[
583
- gr.HTML(label="Highlighted Analysis"),
584
- gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
585
- gr.Textbox(label="Overall Result", lines=4)
586
- ],
587
- title="AI Text Detector",
588
- description="Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.",
589
- api_name="predict",
590
- flagging_mode="never"
591
- )
592
-
593
- # Get the FastAPI app from Gradio
594
- app = demo.app
595
-
596
- # Add CORS middleware
597
- app.add_middleware(
598
- CORSMiddleware,
599
- allow_origins=["*"], # For development
600
- allow_credentials=True,
601
- allow_methods=["GET", "POST", "OPTIONS"],
602
- allow_headers=["*"],
603
- )
604
-
605
- # Ensure CORS is applied before launching
 
 
 
 
606
  if __name__ == "__main__":
 
 
 
607
  demo.queue()
608
  demo.launch(
609
  server_name="0.0.0.0",
610
  server_port=7860,
611
  share=True
612
- )
613
-
 
18
  from io import BytesIO
19
  import base64
20
  import hashlib
21
+ import requests
22
+ import tempfile
23
+ from pathlib import Path
24
+ import mimetypes
25
 
26
  # Configure logging
27
  logging.basicConfig(level=logging.INFO)
 
36
  BATCH_SIZE = 8 # Reduced batch size for CPU
37
  MAX_WORKERS = 4 # Number of worker threads for processing
38
 
39
+ # IMPORTANT: Set PyTorch thread configuration at the module level
40
+ # before any parallel work starts
41
+ if not torch.cuda.is_available():
42
+ # Set thread configuration only once at the beginning
43
+ torch.set_num_threads(MAX_WORKERS)
44
+ try:
45
+ # Only set interop threads if it hasn't been set already
46
+ torch.set_num_interop_threads(MAX_WORKERS)
47
+ except RuntimeError as e:
48
+ logger.warning(f"Could not set interop threads: {str(e)}")
49
+
50
  # Get password hash from environment variable (more secure)
51
  ADMIN_PASSWORD_HASH = os.environ.get('ADMIN_PASSWORD_HASH')
52
 
 
56
  # Excel file path for logs
57
  EXCEL_LOG_PATH = "/tmp/prediction_logs.xlsx"
58
 
59
+ # OCR API settings
60
+ OCR_API_KEY = "9e11346f1288957" # Now using the complete key
61
+ OCR_API_ENDPOINT = "https://api.ocr.space/parse/image"
62
+ OCR_MAX_PDF_PAGES = 3
63
+ OCR_MAX_FILE_SIZE_MB = 1
64
+
65
+ # Configure logging for OCR module
66
+ ocr_logger = logging.getLogger("ocr_module")
67
+ ocr_logger.setLevel(logging.INFO)
68
+
69
+ class OCRProcessor:
70
+ """
71
+ Handles OCR processing of image and document files using OCR.space API
72
+ """
73
+ def __init__(self, api_key: str = OCR_API_KEY):
74
+ self.api_key = api_key
75
+ self.endpoint = OCR_API_ENDPOINT
76
+
77
+ def process_file(self, file_path: str) -> Dict:
78
+ """
79
+ Process a file using OCR.space API
80
+ """
81
+ start_time = time.time()
82
+ ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
83
+
84
+ # Validate file size
85
+ file_size_mb = os.path.getsize(file_path) / (1024 * 1024)
86
+ if file_size_mb > OCR_MAX_FILE_SIZE_MB:
87
+ ocr_logger.warning(f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB")
88
+ return {
89
+ "success": False,
90
+ "error": f"File size ({file_size_mb:.2f} MB) exceeds limit of {OCR_MAX_FILE_SIZE_MB} MB",
91
+ "text": ""
92
+ }
93
+
94
+ # Determine file type and handle accordingly
95
+ file_type = self._get_file_type(file_path)
96
+ ocr_logger.info(f"Detected file type: {file_type}")
97
+
98
+ # Set up API parameters
99
+ payload = {
100
+ 'isOverlayRequired': 'false',
101
+ 'language': 'eng',
102
+ 'OCREngine': '2', # Use more accurate engine
103
+ 'scale': 'true',
104
+ 'detectOrientation': 'true',
105
+ }
106
+
107
+ # For PDF files, check page count limitations
108
+ if file_type == 'application/pdf':
109
+ ocr_logger.info("PDF document detected, enforcing page limit")
110
+ payload['filetype'] = 'PDF'
111
+
112
+ # Prepare file for OCR API - using file data as bytes to avoid file handle issues
113
+ with open(file_path, 'rb') as f:
114
+ file_data = f.read()
115
+
116
+ files = {
117
+ 'file': (os.path.basename(file_path), file_data, file_type)
118
+ }
119
+
120
+ headers = {
121
+ 'apikey': self.api_key,
122
+ }
123
+
124
+ # Make the OCR API request
125
+ try:
126
+ ocr_logger.info(f"Sending request to OCR.space API for file: {os.path.basename(file_path)}")
127
+ response = requests.post(
128
+ self.endpoint,
129
+ files=files,
130
+ data=payload,
131
+ headers=headers,
132
+ timeout=60 # Add 60 second timeout
133
+ )
134
+
135
+ ocr_logger.info(f"OCR API status code: {response.status_code}")
136
+
137
+ # Log response text for debugging (first 200 chars)
138
+ response_preview = response.text[:200] if hasattr(response, 'text') else "No text content"
139
+ ocr_logger.info(f"OCR API response preview: {response_preview}...")
140
+
141
+ try:
142
+ response.raise_for_status()
143
+ except Exception as e:
144
+ ocr_logger.error(f"HTTP Error: {str(e)}")
145
+ return {
146
+ "success": False,
147
+ "error": f"OCR API HTTP Error: {str(e)}",
148
+ "text": ""
149
+ }
150
+
151
+ try:
152
+ result = response.json()
153
+ ocr_logger.info(f"OCR API exit code: {result.get('OCRExitCode')}")
154
+
155
+ # Process the OCR results
156
+ if result.get('OCRExitCode') in [1, 2]: # Success or partial success
157
+ extracted_text = self._extract_text_from_result(result)
158
+ processing_time = time.time() - start_time
159
+ ocr_logger.info(f"OCR processing completed in {processing_time:.2f} seconds")
160
+ ocr_logger.info(f"Extracted text word count: {len(extracted_text.split())}")
161
+
162
+ return {
163
+ "success": True,
164
+ "text": extracted_text,
165
+ "word_count": len(extracted_text.split()),
166
+ "processing_time_ms": int(processing_time * 1000)
167
+ }
168
+ else:
169
+ error_msg = result.get('ErrorMessage', 'OCR processing failed')
170
+ ocr_logger.error(f"OCR API error: {error_msg}")
171
+ return {
172
+ "success": False,
173
+ "error": error_msg,
174
+ "text": ""
175
+ }
176
+ except ValueError as e:
177
+ ocr_logger.error(f"Invalid JSON response: {str(e)}")
178
+ return {
179
+ "success": False,
180
+ "error": f"Invalid response from OCR API: {str(e)}",
181
+ "text": ""
182
+ }
183
+
184
+ except requests.exceptions.RequestException as e:
185
+ ocr_logger.error(f"OCR API request failed: {str(e)}")
186
+ return {
187
+ "success": False,
188
+ "error": f"OCR API request failed: {str(e)}",
189
+ "text": ""
190
+ }
191
+ finally:
192
+ # No need to close file handle as we're using bytes directly
193
+ pass
194
+
195
+ def _extract_text_from_result(self, result: Dict) -> str:
196
+ """
197
+ Extract all text from the OCR API result
198
+ """
199
+ extracted_text = ""
200
+
201
+ if 'ParsedResults' in result and result['ParsedResults']:
202
+ for parsed_result in result['ParsedResults']:
203
+ if parsed_result.get('ParsedText'):
204
+ extracted_text += parsed_result['ParsedText']
205
+
206
+ return extracted_text
207
+
208
+ def _get_file_type(self, file_path: str) -> str:
209
+ """
210
+ Determine MIME type of a file
211
+ """
212
+ mime_type, _ = mimetypes.guess_type(file_path)
213
+ if mime_type is None:
214
+ # Default to binary if MIME type can't be determined
215
+ return 'application/octet-stream'
216
+ return mime_type
217
+
218
  def is_admin_password(input_text: str) -> bool:
219
  """
220
  Check if the input text matches the admin password using secure hash comparison.
 
221
  """
222
  # Hash the input text
223
  input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
 
278
 
279
  class TextClassifier:
280
  def __init__(self):
 
 
 
 
 
281
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
282
  self.model_name = MODEL_NAME
283
  self.tokenizer = None
 
421
  for window_idx, indices in enumerate(batch_indices):
422
  center_idx = len(indices) // 2
423
  center_weight = 0.7 # Higher weight for center sentence
424
+ edge_weight = 0.3 / (len(indices) - 1) if len(indices) > 1 else 0 # Distribute remaining weight
425
 
426
  for pos, sent_idx in enumerate(indices):
427
  # Apply higher weight to center sentence
 
444
 
445
  # Apply minimal smoothing at prediction boundaries
446
  if i > 0 and i < len(sentences) - 1:
447
+ prev_human = sentence_scores[i-1]['human_prob'] / max(sentence_appearances[i-1], 1e-10)
448
+ prev_ai = sentence_scores[i-1]['ai_prob'] / max(sentence_appearances[i-1], 1e-10)
449
+ next_human = sentence_scores[i+1]['human_prob'] / max(sentence_appearances[i+1], 1e-10)
450
+ next_ai = sentence_scores[i+1]['ai_prob'] / max(sentence_appearances[i+1], 1e-10)
451
 
452
  # Check if we're at a prediction boundary
453
  current_pred = 'human' if human_prob > ai_prob else 'ai'
 
522
  'num_sentences': num_sentences
523
  }
524
 
525
+ # Function to handle file upload, OCR processing, and text analysis
526
+ def handle_file_upload_and_analyze(file_obj, mode: str) -> tuple:
527
+ """
528
+ Handle file upload, OCR processing, and text analysis
529
+ """
530
+ # Use the global classifier
531
+ global classifier
532
+ classifier_to_use = classifier
533
+
534
+ if file_obj is None:
535
+ return (
536
+ "No file uploaded",
537
+ "Please upload a file to analyze",
538
+ "No file uploaded for analysis"
539
+ )
540
+
541
+ # Log the type of file object received
542
+ logger.info(f"Received file upload of type: {type(file_obj)}")
543
+
544
+ try:
545
+ # Create a temporary file with an appropriate extension based on content
546
+ if isinstance(file_obj, bytes):
547
+ content_start = file_obj[:20] # Look at the first few bytes
548
+
549
+ # Default to .bin extension
550
+ file_ext = ".bin"
551
+
552
+ # Try to detect PDF files
553
+ if content_start.startswith(b'%PDF'):
554
+ file_ext = ".pdf"
555
+ # For images, detect by common magic numbers
556
+ elif content_start.startswith(b'\xff\xd8'): # JPEG
557
+ file_ext = ".jpg"
558
+ elif content_start.startswith(b'\x89PNG'): # PNG
559
+ file_ext = ".png"
560
+ elif content_start.startswith(b'GIF'): # GIF
561
+ file_ext = ".gif"
562
+
563
+ # Create a temporary file with the detected extension
564
+ with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
565
+ temp_file_path = temp_file.name
566
+ # Write uploaded file data to the temporary file
567
+ temp_file.write(file_obj)
568
+ logger.info(f"Saved uploaded file to {temp_file_path}")
569
+ else:
570
+ # Handle other file object types (should not typically happen with Gradio)
571
+ logger.error(f"Unexpected file object type: {type(file_obj)}")
572
+ return (
573
+ "File upload error",
574
+ "Unexpected file format",
575
+ "Unable to process this file format"
576
+ )
577
+
578
+ # Process the file with OCR
579
+ ocr_processor = OCRProcessor()
580
+ logger.info(f"Starting OCR processing for file: {temp_file_path}")
581
+ ocr_result = ocr_processor.process_file(temp_file_path)
582
+
583
+ if not ocr_result["success"]:
584
+ logger.error(f"OCR processing failed: {ocr_result['error']}")
585
+ return (
586
+ "OCR Processing Error",
587
+ ocr_result["error"],
588
+ "Failed to extract text from the uploaded file"
589
+ )
590
+
591
+ # Get the extracted text
592
+ extracted_text = ocr_result["text"]
593
+ logger.info(f"OCR processing complete. Extracted {len(extracted_text.split())} words")
594
+
595
+ # If no text was extracted
596
+ if not extracted_text.strip():
597
+ logger.warning("No text extracted from file")
598
+ return (
599
+ "No text extracted",
600
+ "The OCR process did not extract any text from the uploaded file.",
601
+ "No text was found in the uploaded file"
602
+ )
603
+
604
+ # Call the original text analysis function with the extracted text
605
+ logger.info("Proceeding with text analysis")
606
+ return analyze_text(extracted_text, mode, classifier_to_use)
607
+
608
+ except Exception as e:
609
+ logger.error(f"Error in file upload processing: {str(e)}")
610
+ return (
611
+ "Error Processing File",
612
+ f"An error occurred while processing the file: {str(e)}",
613
+ "File processing error. Please try again or try a different file."
614
+ )
615
+ finally:
616
+ # Clean up the temporary file
617
+ if 'temp_file_path' in locals() and os.path.exists(temp_file_path):
618
+ try:
619
+ os.remove(temp_file_path)
620
+ logger.info(f"Removed temporary file: {temp_file_path}")
621
+ except Exception as e:
622
+ logger.warning(f"Could not remove temporary file: {str(e)}")
623
+
624
  def initialize_excel_log():
625
  """Initialize the Excel log file if it doesn't exist."""
626
  if not os.path.exists(EXCEL_LOG_PATH):
 
648
  wb.save(EXCEL_LOG_PATH)
649
  logger.info(f"Initialized Excel log file at {EXCEL_LOG_PATH}")
650
 
651
+
652
  def log_prediction_data(input_text, word_count, prediction, confidence, execution_time, mode):
653
  """Log prediction data to an Excel file in the /tmp directory."""
654
  # Initialize the Excel file if it doesn't exist
 
691
  logger.error(f"Error logging prediction data to Excel: {str(e)}")
692
  return False
693
 
694
+
695
  def get_logs_as_base64():
696
  """Read the Excel logs file and return as base64 for downloading."""
697
  if not os.path.exists(EXCEL_LOG_PATH):
 
710
  logger.error(f"Error reading Excel logs: {str(e)}")
711
  return None
712
 
713
+
714
  def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
715
  """Analyze text using specified mode and return formatted results."""
716
  # Check if the input text matches the admin password using secure comparison
 
833
  # Initialize the classifier globally
834
  classifier = TextClassifier()
835
 
836
+ # Create Gradio interface with a file upload button matched to the radio buttons
837
+ def create_interface():
838
+ # Custom CSS for the interface
839
+ css = """
840
+ #analyze-btn {
841
+ background-color: #FF8C00 !important;
842
+ border-color: #FF8C00 !important;
843
+ color: white !important;
844
+ }
845
+
846
+ /* Style the file upload to be more compact */
847
+ .file-upload {
848
+ width: 150px !important;
849
+ margin-left: 15px !important;
850
+ }
851
+
852
+ /* Hide file preview elements */
853
+ .file-upload .file-preview,
854
+ .file-upload p:not(.file-upload p:first-child),
855
+ .file-upload svg,
856
+ .file-upload [data-testid="chunkFileDropArea"],
857
+ .file-upload .file-drop {
858
+ display: none !important;
859
+ }
860
+
861
+ /* Style the upload button */
862
+ .file-upload button {
863
+ height: 40px !important;
864
+ width: 100% !important;
865
+ background-color: #f0f0f0 !important;
866
+ border: 1px solid #d9d9d9 !important;
867
+ border-radius: 4px !important;
868
+ color: #333 !important;
869
+ font-size: 14px !important;
870
+ display: flex !important;
871
+ align-items: center !important;
872
+ justify-content: center !important;
873
+ margin: 0 !important;
874
+ padding: 0 !important;
875
+ }
876
+
877
+ /* Hide the "or" text */
878
+ .file-upload .or {
879
+ display: none !important;
880
+ }
881
+
882
+ /* Make the container compact */
883
+ .file-upload [data-testid="block"] {
884
+ margin: 0 !important;
885
+ padding: 0 !important;
886
+ }
887
+ """
888
+
889
+ with gr.Blocks(css=css, title="AI Text Detector") as demo:
890
+ gr.Markdown("# AI Text Detector")
891
+ gr.Markdown("Analyze text to detect if it was written by a human or AI. Choose between quick scan and detailed sentence-level analysis. 200+ words suggested for accurate predictions.")
892
+
893
+ with gr.Row():
894
+ # Left column - Input
895
+ with gr.Column(scale=1):
896
+ # Text input area
897
+ text_input = gr.Textbox(
898
+ lines=8,
899
+ placeholder="Enter text to analyze...",
900
+ label="Input Text"
901
+ )
902
+
903
+ # Analysis Mode section
904
+ gr.Markdown("Analysis Mode")
905
+ gr.Markdown("Quick mode for faster analysis. Detailed mode for sentence-level analysis.")
906
+
907
+ # Simple row layout for radio buttons and file upload
908
+ with gr.Row():
909
+ mode_selection = gr.Radio(
910
+ choices=["quick", "detailed"],
911
+ value="quick",
912
+ label="",
913
+ show_label=False
914
+ )
915
+
916
+ # Revert to File component but with better styling
917
+ file_upload = gr.File(
918
+ file_types=["image", "pdf", "doc", "docx"],
919
+ type="binary",
920
+ elem_classes=["file-upload"]
921
+ )
922
+
923
+ # Analyze button
924
+ analyze_btn = gr.Button("Analyze Text", elem_id="analyze-btn")
925
+
926
+ # Right column - Results
927
+ with gr.Column(scale=1):
928
+ output_html = gr.HTML(label="Highlighted Analysis")
929
+ output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
930
+ output_result = gr.Textbox(label="Overall Result", lines=4)
931
+
932
+ # Connect components
933
+ analyze_btn.click(
934
+ fn=lambda text, mode: analyze_text(text, mode, classifier),
935
+ inputs=[text_input, mode_selection],
936
+ outputs=[output_html, output_sentences, output_result]
937
  )
938
+
939
+ # Use the file upload handler without passing classifier (will use global)
940
+ file_upload.change(
941
+ fn=handle_file_upload_and_analyze,
942
+ inputs=[file_upload, mode_selection],
943
+ outputs=[output_html, output_sentences, output_result]
944
+ )
945
+
946
+ return demo
947
+
948
+ # Setup the app with CORS middleware
949
+ def setup_app():
950
+ demo = create_interface()
951
+
952
+ # Get the FastAPI app from Gradio
953
+ app = demo.app
954
+
955
+ # Add CORS middleware
956
+ app.add_middleware(
957
+ CORSMiddleware,
958
+ allow_origins=["*"], # For development
959
+ allow_credentials=True,
960
+ allow_methods=["GET", "POST", "OPTIONS"],
961
+ allow_headers=["*"],
962
+ )
963
+
964
+ return demo
965
+
966
+ # Initialize the application
967
  if __name__ == "__main__":
968
+ demo = setup_app()
969
+
970
+ # Start the server
971
  demo.queue()
972
  demo.launch(
973
  server_name="0.0.0.0",
974
  server_port=7860,
975
  share=True
976
+ )