Update app.py
Browse files
app.py
CHANGED
@@ -77,12 +77,6 @@ class OCRProcessor:
|
|
77 |
def process_file(self, file_path: str) -> Dict:
|
78 |
"""
|
79 |
Process a file using OCR.space API
|
80 |
-
|
81 |
-
Args:
|
82 |
-
file_path: Path to the file to be processed
|
83 |
-
|
84 |
-
Returns:
|
85 |
-
Dictionary containing the OCR results and status
|
86 |
"""
|
87 |
start_time = time.time()
|
88 |
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
@@ -101,11 +95,6 @@ class OCRProcessor:
|
|
101 |
file_type = self._get_file_type(file_path)
|
102 |
ocr_logger.info(f"Detected file type: {file_type}")
|
103 |
|
104 |
-
# Special handling for Word documents - convert to PDF if needed
|
105 |
-
if file_type.startswith('application/vnd.openxmlformats-officedocument') or file_type == 'application/msword':
|
106 |
-
ocr_logger.info("Word document detected, processing directly")
|
107 |
-
# Note: OCR.space may handle Word directly, but if not, conversion would be needed here
|
108 |
-
|
109 |
# Prepare the API request
|
110 |
with open(file_path, 'rb') as f:
|
111 |
file_data = f.read()
|
@@ -176,12 +165,6 @@ class OCRProcessor:
|
|
176 |
def _extract_text_from_result(self, result: Dict) -> str:
|
177 |
"""
|
178 |
Extract all text from the OCR API result
|
179 |
-
|
180 |
-
Args:
|
181 |
-
result: The OCR API response JSON
|
182 |
-
|
183 |
-
Returns:
|
184 |
-
Extracted text as a single string
|
185 |
"""
|
186 |
extracted_text = ""
|
187 |
|
@@ -195,12 +178,6 @@ class OCRProcessor:
|
|
195 |
def _get_file_type(self, file_path: str) -> str:
|
196 |
"""
|
197 |
Determine MIME type of a file
|
198 |
-
|
199 |
-
Args:
|
200 |
-
file_path: Path to the file
|
201 |
-
|
202 |
-
Returns:
|
203 |
-
MIME type as string
|
204 |
"""
|
205 |
mime_type, _ = mimetypes.guess_type(file_path)
|
206 |
if mime_type is None:
|
@@ -208,11 +185,9 @@ class OCRProcessor:
|
|
208 |
return 'application/octet-stream'
|
209 |
return mime_type
|
210 |
|
211 |
-
|
212 |
def is_admin_password(input_text: str) -> bool:
|
213 |
"""
|
214 |
Check if the input text matches the admin password using secure hash comparison.
|
215 |
-
This prevents the password from being visible in the source code.
|
216 |
"""
|
217 |
# Hash the input text
|
218 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
@@ -220,7 +195,6 @@ def is_admin_password(input_text: str) -> bool:
|
|
220 |
# Compare hashes (constant-time comparison to prevent timing attacks)
|
221 |
return input_hash == ADMIN_PASSWORD_HASH
|
222 |
|
223 |
-
|
224 |
class TextWindowProcessor:
|
225 |
def __init__(self):
|
226 |
try:
|
@@ -272,10 +246,8 @@ class TextWindowProcessor:
|
|
272 |
|
273 |
return windows, window_sentence_indices
|
274 |
|
275 |
-
|
276 |
class TextClassifier:
|
277 |
def __init__(self):
|
278 |
-
# FIXED: Removed the thread configuration here, as it's now at the module level
|
279 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
280 |
self.model_name = MODEL_NAME
|
281 |
self.tokenizer = None
|
@@ -310,6 +282,7 @@ class TextClassifier:
|
|
310 |
|
311 |
self.model.eval()
|
312 |
|
|
|
313 |
def quick_scan(self, text: str) -> Dict:
|
314 |
"""Perform a quick scan using simple window analysis."""
|
315 |
if not text.strip():
|
@@ -520,19 +493,10 @@ class TextClassifier:
|
|
520 |
'num_sentences': num_sentences
|
521 |
}
|
522 |
|
523 |
-
|
524 |
# Function to handle file upload, OCR processing, and text analysis
|
525 |
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
526 |
"""
|
527 |
Handle file upload, OCR processing, and text analysis
|
528 |
-
|
529 |
-
Args:
|
530 |
-
file_obj: Uploaded file object from Gradio (bytes when using type="binary")
|
531 |
-
mode: Analysis mode (quick or detailed)
|
532 |
-
classifier: The TextClassifier instance
|
533 |
-
|
534 |
-
Returns:
|
535 |
-
Analysis results as a tuple (same format as original analyze_text function)
|
536 |
"""
|
537 |
if file_obj is None:
|
538 |
return (
|
@@ -542,10 +506,6 @@ def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
|
542 |
)
|
543 |
|
544 |
# Create a temporary file with an appropriate extension based on content
|
545 |
-
# Since we don't have the original filename when using binary mode,
|
546 |
-
# we'll use a generic extension based on simple content detection
|
547 |
-
|
548 |
-
# Simple content type detection
|
549 |
content_start = file_obj[:20] # Look at the first few bytes
|
550 |
|
551 |
# Default to .bin extension
|
@@ -561,7 +521,6 @@ def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
|
561 |
file_ext = ".png"
|
562 |
elif content_start.startswith(b'GIF'): # GIF
|
563 |
file_ext = ".gif"
|
564 |
-
# Add more content type detection as needed
|
565 |
|
566 |
# Create a temporary file with the detected extension
|
567 |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
@@ -600,7 +559,6 @@ def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
|
600 |
if os.path.exists(temp_file_path):
|
601 |
os.remove(temp_file_path)
|
602 |
|
603 |
-
|
604 |
def initialize_excel_log():
|
605 |
"""Initialize the Excel log file if it doesn't exist."""
|
606 |
if not os.path.exists(EXCEL_LOG_PATH):
|
@@ -810,20 +768,11 @@ def analyze_text(text: str, mode: str, classifier: TextClassifier) -> tuple:
|
|
810 |
overall_result
|
811 |
)
|
812 |
|
|
|
|
|
813 |
|
814 |
-
#
|
815 |
-
def
|
816 |
-
"""
|
817 |
-
Set up Gradio interface with a more aligned and compact file upload
|
818 |
-
|
819 |
-
Args:
|
820 |
-
classifier: The TextClassifier instance
|
821 |
-
|
822 |
-
Returns:
|
823 |
-
Gradio Interface object
|
824 |
-
"""
|
825 |
-
import gradio as gr
|
826 |
-
|
827 |
# Create analyzer functions that capture the classifier
|
828 |
def analyze_text_wrapper(text, mode):
|
829 |
return analyze_text(text, mode, classifier)
|
@@ -833,115 +782,109 @@ def setup_gradio_interface(classifier):
|
|
833 |
return analyze_text_wrapper("", mode) # Return empty analysis
|
834 |
return handle_file_upload_and_analyze(file_obj, mode, classifier)
|
835 |
|
|
|
836 |
with gr.Blocks(title="AI Text Detector") as demo:
|
837 |
gr.Markdown("# AI Text Detector")
|
838 |
|
839 |
with gr.Row():
|
840 |
-
# Left column
|
841 |
with gr.Column():
|
842 |
text_input = gr.Textbox(
|
843 |
-
lines=8,
|
844 |
placeholder="Enter text to analyze...",
|
845 |
label="Input Text"
|
846 |
)
|
847 |
|
848 |
with gr.Row():
|
849 |
-
#
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
label=""
|
857 |
-
)
|
858 |
|
859 |
-
#
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
)
|
867 |
|
868 |
-
# Analyze button
|
869 |
analyze_button = gr.Button("Analyze Text")
|
870 |
|
871 |
-
# Right column
|
872 |
with gr.Column():
|
873 |
output_html = gr.HTML(label="Highlighted Analysis")
|
874 |
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
875 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
876 |
|
877 |
-
# Connect
|
878 |
analyze_button.click(
|
879 |
analyze_text_wrapper,
|
880 |
inputs=[text_input, mode_selection],
|
881 |
outputs=[output_html, output_sentences, output_result]
|
882 |
)
|
883 |
|
884 |
-
# Connect file upload to automatically process when changed
|
885 |
file_upload.change(
|
886 |
handle_file_upload_wrapper,
|
887 |
inputs=[file_upload, mode_selection],
|
888 |
outputs=[output_html, output_sentences, output_result]
|
889 |
)
|
890 |
|
891 |
-
#
|
892 |
gr.HTML("""
|
893 |
<style>
|
894 |
-
/* Make file upload
|
895 |
-
.
|
896 |
-
|
|
|
|
|
897 |
}
|
898 |
|
899 |
-
.
|
900 |
-
|
901 |
-
|
902 |
}
|
903 |
|
904 |
-
.
|
905 |
-
min-height: 0;
|
|
|
906 |
}
|
907 |
|
908 |
-
/*
|
909 |
-
.file-upload
|
910 |
-
|
911 |
-
|
912 |
-
justify-content: center;
|
913 |
-
padding-bottom: 10px;
|
914 |
}
|
915 |
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
922 |
}
|
923 |
</style>
|
924 |
""")
|
925 |
|
926 |
return demo
|
927 |
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
"""
|
932 |
-
Setup the application with OCR capabilities
|
933 |
-
"""
|
934 |
-
# Initialize the classifier (uses the fixed class)
|
935 |
-
classifier = TextClassifier()
|
936 |
-
|
937 |
-
# Create the Gradio interface with file upload functionality
|
938 |
-
demo = setup_gradio_interface(classifier)
|
939 |
|
940 |
# Get the FastAPI app from Gradio
|
941 |
app = demo.app
|
942 |
|
943 |
-
# Add CORS middleware
|
944 |
-
from fastapi.middleware.cors import CORSMiddleware
|
945 |
app.add_middleware(
|
946 |
CORSMiddleware,
|
947 |
allow_origins=["*"], # For development
|
@@ -950,14 +893,11 @@ def setup_app_with_ocr():
|
|
950 |
allow_headers=["*"],
|
951 |
)
|
952 |
|
953 |
-
# Return the demo for launching
|
954 |
return demo
|
955 |
|
956 |
-
|
957 |
# Initialize the application
|
958 |
if __name__ == "__main__":
|
959 |
-
|
960 |
-
demo = setup_app_with_ocr()
|
961 |
|
962 |
# Start the server
|
963 |
demo.queue()
|
|
|
77 |
def process_file(self, file_path: str) -> Dict:
|
78 |
"""
|
79 |
Process a file using OCR.space API
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
"""
|
81 |
start_time = time.time()
|
82 |
ocr_logger.info(f"Starting OCR processing for file: {os.path.basename(file_path)}")
|
|
|
95 |
file_type = self._get_file_type(file_path)
|
96 |
ocr_logger.info(f"Detected file type: {file_type}")
|
97 |
|
|
|
|
|
|
|
|
|
|
|
98 |
# Prepare the API request
|
99 |
with open(file_path, 'rb') as f:
|
100 |
file_data = f.read()
|
|
|
165 |
def _extract_text_from_result(self, result: Dict) -> str:
|
166 |
"""
|
167 |
Extract all text from the OCR API result
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
"""
|
169 |
extracted_text = ""
|
170 |
|
|
|
178 |
def _get_file_type(self, file_path: str) -> str:
|
179 |
"""
|
180 |
Determine MIME type of a file
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
"""
|
182 |
mime_type, _ = mimetypes.guess_type(file_path)
|
183 |
if mime_type is None:
|
|
|
185 |
return 'application/octet-stream'
|
186 |
return mime_type
|
187 |
|
|
|
188 |
def is_admin_password(input_text: str) -> bool:
|
189 |
"""
|
190 |
Check if the input text matches the admin password using secure hash comparison.
|
|
|
191 |
"""
|
192 |
# Hash the input text
|
193 |
input_hash = hashlib.sha256(input_text.strip().encode()).hexdigest()
|
|
|
195 |
# Compare hashes (constant-time comparison to prevent timing attacks)
|
196 |
return input_hash == ADMIN_PASSWORD_HASH
|
197 |
|
|
|
198 |
class TextWindowProcessor:
|
199 |
def __init__(self):
|
200 |
try:
|
|
|
246 |
|
247 |
return windows, window_sentence_indices
|
248 |
|
|
|
249 |
class TextClassifier:
|
250 |
def __init__(self):
|
|
|
251 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
252 |
self.model_name = MODEL_NAME
|
253 |
self.tokenizer = None
|
|
|
282 |
|
283 |
self.model.eval()
|
284 |
|
285 |
+
# [Other TextClassifier methods remain the same as in paste.txt]
|
286 |
def quick_scan(self, text: str) -> Dict:
|
287 |
"""Perform a quick scan using simple window analysis."""
|
288 |
if not text.strip():
|
|
|
493 |
'num_sentences': num_sentences
|
494 |
}
|
495 |
|
|
|
496 |
# Function to handle file upload, OCR processing, and text analysis
|
497 |
def handle_file_upload_and_analyze(file_obj, mode: str, classifier) -> tuple:
|
498 |
"""
|
499 |
Handle file upload, OCR processing, and text analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
"""
|
501 |
if file_obj is None:
|
502 |
return (
|
|
|
506 |
)
|
507 |
|
508 |
# Create a temporary file with an appropriate extension based on content
|
|
|
|
|
|
|
|
|
509 |
content_start = file_obj[:20] # Look at the first few bytes
|
510 |
|
511 |
# Default to .bin extension
|
|
|
521 |
file_ext = ".png"
|
522 |
elif content_start.startswith(b'GIF'): # GIF
|
523 |
file_ext = ".gif"
|
|
|
524 |
|
525 |
# Create a temporary file with the detected extension
|
526 |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as temp_file:
|
|
|
559 |
if os.path.exists(temp_file_path):
|
560 |
os.remove(temp_file_path)
|
561 |
|
|
|
562 |
def initialize_excel_log():
|
563 |
"""Initialize the Excel log file if it doesn't exist."""
|
564 |
if not os.path.exists(EXCEL_LOG_PATH):
|
|
|
768 |
overall_result
|
769 |
)
|
770 |
|
771 |
+
# Initialize the classifier globally
|
772 |
+
classifier = TextClassifier()
|
773 |
|
774 |
+
# Create Gradio interface with a small file upload button next to the radio buttons
|
775 |
+
def setup_interface():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
776 |
# Create analyzer functions that capture the classifier
|
777 |
def analyze_text_wrapper(text, mode):
|
778 |
return analyze_text(text, mode, classifier)
|
|
|
782 |
return analyze_text_wrapper("", mode) # Return empty analysis
|
783 |
return handle_file_upload_and_analyze(file_obj, mode, classifier)
|
784 |
|
785 |
+
# Create the interface similar to the original but with a small file upload button
|
786 |
with gr.Blocks(title="AI Text Detector") as demo:
|
787 |
gr.Markdown("# AI Text Detector")
|
788 |
|
789 |
with gr.Row():
|
790 |
+
# Left column for input
|
791 |
with gr.Column():
|
792 |
text_input = gr.Textbox(
|
793 |
+
lines=8,
|
794 |
placeholder="Enter text to analyze...",
|
795 |
label="Input Text"
|
796 |
)
|
797 |
|
798 |
with gr.Row():
|
799 |
+
# Mode selection (same as original)
|
800 |
+
mode_selection = gr.Radio(
|
801 |
+
choices=["quick", "detailed"],
|
802 |
+
value="quick",
|
803 |
+
label="Analysis Mode",
|
804 |
+
info="Quick mode for faster analysis. Detailed mode for sentence-level analysis."
|
805 |
+
)
|
|
|
|
|
806 |
|
807 |
+
# Small file upload button (like the Claude paperclip)
|
808 |
+
file_upload = gr.File(
|
809 |
+
label="",
|
810 |
+
file_types=["image", "pdf", "doc", "docx"],
|
811 |
+
type="binary",
|
812 |
+
elem_classes=["small-file-upload"]
|
813 |
+
)
|
|
|
814 |
|
|
|
815 |
analyze_button = gr.Button("Analyze Text")
|
816 |
|
817 |
+
# Right column for output
|
818 |
with gr.Column():
|
819 |
output_html = gr.HTML(label="Highlighted Analysis")
|
820 |
output_sentences = gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10)
|
821 |
output_result = gr.Textbox(label="Overall Result", lines=4)
|
822 |
|
823 |
+
# Connect the components
|
824 |
analyze_button.click(
|
825 |
analyze_text_wrapper,
|
826 |
inputs=[text_input, mode_selection],
|
827 |
outputs=[output_html, output_sentences, output_result]
|
828 |
)
|
829 |
|
|
|
830 |
file_upload.change(
|
831 |
handle_file_upload_wrapper,
|
832 |
inputs=[file_upload, mode_selection],
|
833 |
outputs=[output_html, output_sentences, output_result]
|
834 |
)
|
835 |
|
836 |
+
# Custom CSS to style the file upload button like a small paperclip
|
837 |
gr.HTML("""
|
838 |
<style>
|
839 |
+
/* Make the file upload small and positioned correctly */
|
840 |
+
.small-file-upload {
|
841 |
+
width: 40px !important;
|
842 |
+
margin-left: 10px !important;
|
843 |
+
margin-top: 15px !important;
|
844 |
}
|
845 |
|
846 |
+
.small-file-upload > .wrap {
|
847 |
+
padding: 0 !important;
|
848 |
+
margin: 0 !important;
|
849 |
}
|
850 |
|
851 |
+
.small-file-upload .file-preview {
|
852 |
+
min-height: 0 !important;
|
853 |
+
padding: 0 !important;
|
854 |
}
|
855 |
|
856 |
+
/* Make file upload look like a paperclip icon */
|
857 |
+
.small-file-upload .icon {
|
858 |
+
font-size: 1.2em !important;
|
859 |
+
opacity: 0.7 !important;
|
|
|
|
|
860 |
}
|
861 |
|
862 |
+
.small-file-upload .upload-button {
|
863 |
+
border-radius: 50% !important;
|
864 |
+
padding: 5px !important;
|
865 |
+
width: 30px !important;
|
866 |
+
height: 30px !important;
|
867 |
+
display: flex !important;
|
868 |
+
align-items: center !important;
|
869 |
+
justify-content: center !important;
|
870 |
+
}
|
871 |
+
|
872 |
+
.small-file-upload .upload-button:hover {
|
873 |
+
background-color: #f0f0f0 !important;
|
874 |
}
|
875 |
</style>
|
876 |
""")
|
877 |
|
878 |
return demo
|
879 |
|
880 |
+
# Setup the app with CORS middleware
|
881 |
+
def setup_app():
|
882 |
+
demo = setup_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
883 |
|
884 |
# Get the FastAPI app from Gradio
|
885 |
app = demo.app
|
886 |
|
887 |
+
# Add CORS middleware
|
|
|
888 |
app.add_middleware(
|
889 |
CORSMiddleware,
|
890 |
allow_origins=["*"], # For development
|
|
|
893 |
allow_headers=["*"],
|
894 |
)
|
895 |
|
|
|
896 |
return demo
|
897 |
|
|
|
898 |
# Initialize the application
|
899 |
if __name__ == "__main__":
|
900 |
+
demo = setup_app()
|
|
|
901 |
|
902 |
# Start the server
|
903 |
demo.queue()
|