File size: 10,497 Bytes
7eaaff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0421a0c
7eaaff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f8bf20
7eaaff0
f99111f
 
1ccc1d3
edd5bd3
 
 
 
 
 
 
7eaaff0
f99111f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7eaaff0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict
import logging
import os
import gradio as gr

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 17
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65

class TextWindowProcessor:
    def __init__(self):
        try:
            self.nlp = spacy.load("en_core_web_sm")
        except OSError:
            logger.info("Downloading spacy model...")
            spacy.cli.download("en_core_web_sm")
            self.nlp = spacy.load("en_core_web_sm")

        if 'sentencizer' not in self.nlp.pipe_names:
            self.nlp.add_pipe('sentencizer')

        disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
        self.nlp.disable_pipes(*disabled_pipes)

    def split_into_sentences(self, text: str) -> List[str]:
        doc = self.nlp(text)
        return [str(sent).strip() for sent in doc.sents]

    def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]:
        """Create windows centered around each sentence for detailed analysis."""
        windows = []
        window_sentence_indices = []

        for i in range(len(sentences)):
            half_window = window_size // 2
            start_idx = max(0, i - half_window)
            end_idx = min(len(sentences), i + half_window + 1)

            if start_idx == 0:
                end_idx = min(len(sentences), window_size)
            elif end_idx == len(sentences):
                start_idx = max(0, len(sentences) - window_size)

            window = sentences[start_idx:end_idx]
            windows.append(" ".join(window))
            window_sentence_indices.append(list(range(start_idx, end_idx)))

        return windows, window_sentence_indices

class TextClassifier:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.model_name = MODEL_NAME
        self.tokenizer = None
        self.model = None
        self.processor = TextWindowProcessor()
        self.initialize_model()
        
    def initialize_model(self):
            """Initialize the model and tokenizer."""
            logger.info("Initializing model and tokenizer...")
            
            # Download and save tokenizer files locally
            local_tokenizer_path = "tokenizer"
            if not os.path.exists(local_tokenizer_path):
                AutoTokenizer.from_pretrained(self.model_name).save_pretrained(local_tokenizer_path)
            
            # Load from local files
            self.tokenizer = AutoTokenizer.from_pretrained(local_tokenizer_path)
            
            # First initialize the base model
            self.model = AutoModelForSequenceClassification.from_pretrained(
                self.model_name,
                num_labels=2
            ).to(self.device)
            
            # Look for model file in the same directory as the code
            model_path = "model.pt"  # Your model file should be uploaded as model.pt
            if os.path.exists(model_path):
                logger.info(f"Loading custom model from {model_path}")
                checkpoint = torch.load(model_path, map_location=self.device)
                self.model.load_state_dict(checkpoint['model_state_dict'])
            else:
                logger.warning("Custom model file not found. Using base model.")
                
            self.model.eval()

    def predict_with_sentence_scores(self, text: str) -> Dict:
        """Predict with sentence-level granularity using overlapping windows."""
        if not text.strip():
            return {
                'sentence_predictions': [],
                'highlighted_text': '',
                'full_text': '',
                'overall_prediction': {
                    'prediction': 'unknown',
                    'confidence': 0.0,
                    'num_sentences': 0
                }
            }

        sentences = self.processor.split_into_sentences(text)
        if not sentences:
            return {}

        # Create centered windows for each sentence
        windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)

        # Track scores for each sentence
        sentence_appearances = {i: 0 for i in range(len(sentences))}
        sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}

        # Process windows in batches to save memory
        batch_size = 16
        for i in range(0, len(windows), batch_size):
            batch_windows = windows[i:i + batch_size]
            batch_indices = window_sentence_indices[i:i + batch_size]

            inputs = self.tokenizer(
                batch_windows,
                truncation=True,
                padding=True,
                max_length=MAX_LENGTH,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs)
                probs = F.softmax(outputs.logits, dim=-1)

                for window_idx, indices in enumerate(batch_indices):
                    for sent_idx in indices:
                        sentence_appearances[sent_idx] += 1
                        sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item()
                        sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item()

        # Average the scores and create final sentence-level predictions
        sentence_predictions = []
        for i in range(len(sentences)):
            if sentence_appearances[i] > 0:
                human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
                ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
                sentence_predictions.append({
                    'sentence': sentences[i],
                    'human_prob': human_prob,
                    'ai_prob': ai_prob,
                    'prediction': 'human' if human_prob > ai_prob else 'ai',
                    'confidence': max(human_prob, ai_prob)
                })

        # Generate analysis outputs
        return {
            'sentence_predictions': sentence_predictions,
            'highlighted_text': self.format_predictions_html(sentence_predictions),
            'full_text': text,
            'overall_prediction': self.aggregate_predictions(sentence_predictions)
        }

    def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
        """Format predictions as HTML with color-coding."""
        html_parts = []
        
        for pred in sentence_predictions:
            sentence = pred['sentence']
            confidence = pred['confidence']
            
            if confidence >= CONFIDENCE_THRESHOLD:
                if pred['prediction'] == 'human':
                    color = "#90EE90"  # Light green
                else:
                    color = "#FFB6C6"  # Light red
            else:
                if pred['prediction'] == 'human':
                    color = "#E8F5E9"  # Very light green
                else:
                    color = "#FFEBEE"  # Very light red
                    
            html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
            
        return " ".join(html_parts)

    def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
        """Aggregate predictions from multiple sentences into a single prediction."""
        if not predictions:
            return {
                'prediction': 'unknown',
                'confidence': 0.0,
                'num_sentences': 0
            }

        total_human_prob = sum(p['human_prob'] for p in predictions)
        total_ai_prob = sum(p['ai_prob'] for p in predictions)
        num_sentences = len(predictions)

        avg_human_prob = total_human_prob / num_sentences
        avg_ai_prob = total_ai_prob / num_sentences

        return {
            'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
            'confidence': max(avg_human_prob, avg_ai_prob),
            'num_sentences': num_sentences
        }

def analyze_text(text: str, classifier: TextClassifier) -> tuple:
    """Analyze text and return formatted results for Gradio interface."""
    # Get predictions
    analysis = classifier.predict_with_sentence_scores(text)
    
    # Format sentence-by-sentence analysis
    detailed_analysis = []
    for pred in analysis['sentence_predictions']:
        confidence = pred['confidence'] * 100
        detailed_analysis.append(f"Sentence: {pred['sentence']}")
        detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
        detailed_analysis.append(f"Confidence: {confidence:.1f}%")
        detailed_analysis.append("-" * 50)
    
    # Format overall prediction
    final_pred = analysis['overall_prediction']
    overall_result = f"""
    FINAL PREDICTION: {final_pred['prediction'].upper()}
    Overall confidence: {final_pred['confidence']*100:.1f}%
    Number of sentences analyzed: {final_pred['num_sentences']}
    """
    
    return (
        analysis['highlighted_text'],
        "\n".join(detailed_analysis),
        overall_result
    )

# Initialize the classifier globally
classifier = TextClassifier()

# Create Gradio interface
demo = gr.Interface(
    fn=lambda text: analyze_text(text, classifier),
    inputs=gr.Textbox(
        lines=8,
        placeholder="Enter text to analyze...",
        label="Input Text"
    ),
    outputs=[
        gr.HTML(label="Highlighted Analysis"),
        gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
        gr.Textbox(label="Overall Result", lines=4)
    ],
    title="AI Text Detector",
    description="Analyze text to detect if it was written by a human or AI. Text is analyzed sentence by sentence, with color coding indicating the prediction confidence.",
    examples=[
        ["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified. This demonstrates the AI detection capabilities."],
    ],
    allow_flagging="never"
)

# Launch the interface
if __name__ == "__main__":
    demo.launch()