File size: 10,497 Bytes
7eaaff0 0421a0c 7eaaff0 3f8bf20 7eaaff0 f99111f 1ccc1d3 edd5bd3 7eaaff0 f99111f 7eaaff0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch.nn.functional as F
import spacy
from typing import List, Dict
import logging
import os
import gradio as gr
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Constants
MAX_LENGTH = 512
MODEL_NAME = "microsoft/deberta-v3-small"
WINDOW_SIZE = 17
WINDOW_OVERLAP = 2
CONFIDENCE_THRESHOLD = 0.65
class TextWindowProcessor:
def __init__(self):
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
logger.info("Downloading spacy model...")
spacy.cli.download("en_core_web_sm")
self.nlp = spacy.load("en_core_web_sm")
if 'sentencizer' not in self.nlp.pipe_names:
self.nlp.add_pipe('sentencizer')
disabled_pipes = [pipe for pipe in self.nlp.pipe_names if pipe != 'sentencizer']
self.nlp.disable_pipes(*disabled_pipes)
def split_into_sentences(self, text: str) -> List[str]:
doc = self.nlp(text)
return [str(sent).strip() for sent in doc.sents]
def create_centered_windows(self, sentences: List[str], window_size: int) -> tuple[List[str], List[List[int]]]:
"""Create windows centered around each sentence for detailed analysis."""
windows = []
window_sentence_indices = []
for i in range(len(sentences)):
half_window = window_size // 2
start_idx = max(0, i - half_window)
end_idx = min(len(sentences), i + half_window + 1)
if start_idx == 0:
end_idx = min(len(sentences), window_size)
elif end_idx == len(sentences):
start_idx = max(0, len(sentences) - window_size)
window = sentences[start_idx:end_idx]
windows.append(" ".join(window))
window_sentence_indices.append(list(range(start_idx, end_idx)))
return windows, window_sentence_indices
class TextClassifier:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.model_name = MODEL_NAME
self.tokenizer = None
self.model = None
self.processor = TextWindowProcessor()
self.initialize_model()
def initialize_model(self):
"""Initialize the model and tokenizer."""
logger.info("Initializing model and tokenizer...")
# Download and save tokenizer files locally
local_tokenizer_path = "tokenizer"
if not os.path.exists(local_tokenizer_path):
AutoTokenizer.from_pretrained(self.model_name).save_pretrained(local_tokenizer_path)
# Load from local files
self.tokenizer = AutoTokenizer.from_pretrained(local_tokenizer_path)
# First initialize the base model
self.model = AutoModelForSequenceClassification.from_pretrained(
self.model_name,
num_labels=2
).to(self.device)
# Look for model file in the same directory as the code
model_path = "model.pt" # Your model file should be uploaded as model.pt
if os.path.exists(model_path):
logger.info(f"Loading custom model from {model_path}")
checkpoint = torch.load(model_path, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
else:
logger.warning("Custom model file not found. Using base model.")
self.model.eval()
def predict_with_sentence_scores(self, text: str) -> Dict:
"""Predict with sentence-level granularity using overlapping windows."""
if not text.strip():
return {
'sentence_predictions': [],
'highlighted_text': '',
'full_text': '',
'overall_prediction': {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
}
sentences = self.processor.split_into_sentences(text)
if not sentences:
return {}
# Create centered windows for each sentence
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
# Track scores for each sentence
sentence_appearances = {i: 0 for i in range(len(sentences))}
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
# Process windows in batches to save memory
batch_size = 16
for i in range(0, len(windows), batch_size):
batch_windows = windows[i:i + batch_size]
batch_indices = window_sentence_indices[i:i + batch_size]
inputs = self.tokenizer(
batch_windows,
truncation=True,
padding=True,
max_length=MAX_LENGTH,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
probs = F.softmax(outputs.logits, dim=-1)
for window_idx, indices in enumerate(batch_indices):
for sent_idx in indices:
sentence_appearances[sent_idx] += 1
sentence_scores[sent_idx]['human_prob'] += probs[window_idx][1].item()
sentence_scores[sent_idx]['ai_prob'] += probs[window_idx][0].item()
# Average the scores and create final sentence-level predictions
sentence_predictions = []
for i in range(len(sentences)):
if sentence_appearances[i] > 0:
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
sentence_predictions.append({
'sentence': sentences[i],
'human_prob': human_prob,
'ai_prob': ai_prob,
'prediction': 'human' if human_prob > ai_prob else 'ai',
'confidence': max(human_prob, ai_prob)
})
# Generate analysis outputs
return {
'sentence_predictions': sentence_predictions,
'highlighted_text': self.format_predictions_html(sentence_predictions),
'full_text': text,
'overall_prediction': self.aggregate_predictions(sentence_predictions)
}
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
"""Format predictions as HTML with color-coding."""
html_parts = []
for pred in sentence_predictions:
sentence = pred['sentence']
confidence = pred['confidence']
if confidence >= CONFIDENCE_THRESHOLD:
if pred['prediction'] == 'human':
color = "#90EE90" # Light green
else:
color = "#FFB6C6" # Light red
else:
if pred['prediction'] == 'human':
color = "#E8F5E9" # Very light green
else:
color = "#FFEBEE" # Very light red
html_parts.append(f'<span style="background-color: {color};">{sentence}</span>')
return " ".join(html_parts)
def aggregate_predictions(self, predictions: List[Dict]) -> Dict:
"""Aggregate predictions from multiple sentences into a single prediction."""
if not predictions:
return {
'prediction': 'unknown',
'confidence': 0.0,
'num_sentences': 0
}
total_human_prob = sum(p['human_prob'] for p in predictions)
total_ai_prob = sum(p['ai_prob'] for p in predictions)
num_sentences = len(predictions)
avg_human_prob = total_human_prob / num_sentences
avg_ai_prob = total_ai_prob / num_sentences
return {
'prediction': 'human' if avg_human_prob > avg_ai_prob else 'ai',
'confidence': max(avg_human_prob, avg_ai_prob),
'num_sentences': num_sentences
}
def analyze_text(text: str, classifier: TextClassifier) -> tuple:
"""Analyze text and return formatted results for Gradio interface."""
# Get predictions
analysis = classifier.predict_with_sentence_scores(text)
# Format sentence-by-sentence analysis
detailed_analysis = []
for pred in analysis['sentence_predictions']:
confidence = pred['confidence'] * 100
detailed_analysis.append(f"Sentence: {pred['sentence']}")
detailed_analysis.append(f"Prediction: {pred['prediction'].upper()}")
detailed_analysis.append(f"Confidence: {confidence:.1f}%")
detailed_analysis.append("-" * 50)
# Format overall prediction
final_pred = analysis['overall_prediction']
overall_result = f"""
FINAL PREDICTION: {final_pred['prediction'].upper()}
Overall confidence: {final_pred['confidence']*100:.1f}%
Number of sentences analyzed: {final_pred['num_sentences']}
"""
return (
analysis['highlighted_text'],
"\n".join(detailed_analysis),
overall_result
)
# Initialize the classifier globally
classifier = TextClassifier()
# Create Gradio interface
demo = gr.Interface(
fn=lambda text: analyze_text(text, classifier),
inputs=gr.Textbox(
lines=8,
placeholder="Enter text to analyze...",
label="Input Text"
),
outputs=[
gr.HTML(label="Highlighted Analysis"),
gr.Textbox(label="Sentence-by-Sentence Analysis", lines=10),
gr.Textbox(label="Overall Result", lines=4)
],
title="AI Text Detector",
description="Analyze text to detect if it was written by a human or AI. Text is analyzed sentence by sentence, with color coding indicating the prediction confidence.",
examples=[
["This is a sample text written by a human. It contains multiple sentences with different ideas. The analysis will show how each sentence is classified. This demonstrates the AI detection capabilities."],
],
allow_flagging="never"
)
# Launch the interface
if __name__ == "__main__":
demo.launch() |