Spaces:
Sleeping
Sleeping
File size: 1,570 Bytes
ce4c046 d9f6ba4 ce4c046 d9f6ba4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
title: Multi-Modal AI Demo
emoji: 🤖
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.20.1
app_file: app.py
pinned: false
---
# Multi-Modal AI Demo
This project demonstrates the use of multi-modal AI capabilities using Hugging Face pretrained models. The application provides the following features:
1. **Image Captioning**: Generate descriptive captions for images
2. **Visual Question Answering**: Answer questions about the content of images
3. **Sentiment Analysis**: Analyze the sentiment of text inputs
## Requirements
- Python 3.8+
- Dependencies listed in `requirements.txt`
## Local Installation
To run this project locally:
1. Clone this repository
2. Install dependencies:
```
pip install -r requirements.txt
```
3. Run the application:
```
python app.py
```
Then open your browser and navigate to the URL shown in the terminal (typically http://127.0.0.1:7860).
## Deploying to Hugging Face Spaces
This project is configured for direct deployment to Hugging Face Spaces. The core files needed for deployment are:
- `app.py` - Main application file
- `model_utils.py` - Utility functions for model operations
- `requirements.txt` - Project dependencies
- `README.md` - This documentation file with Spaces configuration
## Models Used
This demo uses the following pretrained models from Hugging Face:
- Image Captioning: `nlpconnect/vit-gpt2-image-captioning`
- Visual Question Answering: `nlpconnect/vit-gpt2-image-captioning` (simplified)
- Sentiment Analysis: `distilbert-base-uncased-finetuned-sst-2-english` |