File size: 1,570 Bytes
ce4c046
 
 
 
 
 
d9f6ba4
ce4c046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9f6ba4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
title: Multi-Modal AI Demo
emoji: 🤖
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.20.1
app_file: app.py
pinned: false
---

# Multi-Modal AI Demo

This project demonstrates the use of multi-modal AI capabilities using Hugging Face pretrained models. The application provides the following features:

1. **Image Captioning**: Generate descriptive captions for images
2. **Visual Question Answering**: Answer questions about the content of images
3. **Sentiment Analysis**: Analyze the sentiment of text inputs

## Requirements

- Python 3.8+
- Dependencies listed in `requirements.txt`

## Local Installation

To run this project locally:

1. Clone this repository
2. Install dependencies:
   ```
   pip install -r requirements.txt
   ```
3. Run the application:
   ```
   python app.py
   ```

Then open your browser and navigate to the URL shown in the terminal (typically http://127.0.0.1:7860).

## Deploying to Hugging Face Spaces

This project is configured for direct deployment to Hugging Face Spaces. The core files needed for deployment are:

- `app.py` - Main application file
- `model_utils.py` - Utility functions for model operations
- `requirements.txt` - Project dependencies
- `README.md` - This documentation file with Spaces configuration

## Models Used

This demo uses the following pretrained models from Hugging Face:
- Image Captioning: `nlpconnect/vit-gpt2-image-captioning`
- Visual Question Answering: `nlpconnect/vit-gpt2-image-captioning` (simplified)
- Sentiment Analysis: `distilbert-base-uncased-finetuned-sst-2-english`