File size: 7,954 Bytes
d6b6251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b73e4f
d6b6251
 
5f4390d
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b6251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import gradio as gr
import PIL.Image
import transformers
from transformers import PaliGemmaForConditionalGeneration, PaliGemmaProcessor
import torch
import string
import functools
import re
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
import spaces

model_id = "google/paligemma2-3b-mix-448"
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
HF_KEY = os.getenv("HF_KEY")
if not HF_KEY:
    raise ValueError("Please set the HF_KEY environment variable with your Hugging Face API token")

model = PaliGemmaForConditionalGeneration.from_pretrained(
    model_id,
    token=HF_KEY,
    trust_remote_code=True
).eval().to(device)

processor = PaliGemmaProcessor.from_pretrained(
    model_id,
    token=HF_KEY,
    trust_remote_code=True)

@spaces.GPU
def infer(image: PIL.Image.Image, text: str, max_new_tokens: int) -> str:
    inputs = processor(text=text, images=image, return_tensors="pt").to(device)
    with torch.inference_mode():
      generated_ids = model.generate(
          **inputs,
          max_new_tokens=max_new_tokens,
          do_sample=False
      )
    result = processor.batch_decode(generated_ids, skip_special_tokens=True)
    return result[0][len(text):].lstrip("\n")

def parse_segmentation(input_image, input_text):
    out = infer(input_image, input_text, max_new_tokens=200)
    objs = extract_objs(out.lstrip("\n"), input_image.size[0], input_image.size[1], unique_labels=True)
    labels = set(obj.get('name') for obj in objs if obj.get('name'))
    color_map = {l: COLORS[i % len(COLORS)] for i, l in enumerate(labels)}
    highlighted_text = [(obj['content'], obj.get('name')) for obj in objs]
    annotated_img = (
        input_image,
        [
            (
                obj['mask'] if obj.get('mask') is not None else obj['xyxy'],
                obj['name'] or '',
            )
            for obj in objs
            if 'mask' in obj or 'xyxy' in obj
        ],
    )
    has_annotations = bool(annotated_img[1])
    return annotated_img

def _get_params(checkpoint):
    def transp(kernel):
        return np.transpose(kernel, (2, 3, 1, 0))

    def conv(name):
        return {
            'bias': checkpoint[name + '.bias'],
            'kernel': transp(checkpoint[name + '.weight']),
        }

    def resblock(name):
        return {
            'Conv_0': conv(name + '.0'),
            'Conv_1': conv(name + '.2'),
            'Conv_2': conv(name + '.4'),
        }

    return {
        '_embeddings': checkpoint['_vq_vae._embedding'],
        'Conv_0': conv('decoder.0'),
        'ResBlock_0': resblock('decoder.2.net'),
        'ResBlock_1': resblock('decoder.3.net'),
        'ConvTranspose_0': conv('decoder.4'),
        'ConvTranspose_1': conv('decoder.6'),
        'ConvTranspose_2': conv('decoder.8'),
        'ConvTranspose_3': conv('decoder.10'),
        'Conv_1': conv('decoder.12'),
    }

def _quantized_values_from_codebook_indices(codebook_indices, embeddings):
    batch_size, num_tokens = codebook_indices.shape
    assert num_tokens == 16, codebook_indices.shape
    unused_num_embeddings, embedding_dim = embeddings.shape
    
    encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0)
    encodings = encodings.reshape((batch_size, 4, 4, embedding_dim))
    return encodings

@functools.cache
def _get_reconstruct_masks():
    class ResBlock(nn.Module):
        features: int

        @nn.compact
        def __call__(self, x):
            original_x = x
            x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
            x = nn.relu(x)
            x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x)
            x = nn.relu(x)
            x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x)
            return x + original_x

    class Decoder(nn.Module):
        @nn.compact
        def __call__(self, x):
            num_res_blocks = 2
            dim = 128
            num_upsample_layers = 4

            x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x)
            x = nn.relu(x)

            for _ in range(num_res_blocks):
                x = ResBlock(features=dim)(x)

            for _ in range(num_upsample_layers):
                x = nn.ConvTranspose(
                    features=dim,
                    kernel_size=(4, 4),
                    strides=(2, 2),
                    padding=2,
                    transpose_kernel=True,
                )(x)
                x = nn.relu(x)
                dim //= 2

            x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x)
            return x

    def reconstruct_masks(codebook_indices):
        quantized = _quantized_values_from_codebook_indices(
            codebook_indices, params['_embeddings']
        )
        return Decoder().apply({'params': params}, quantized)

    with open(_MODEL_PATH, 'rb') as f:
        params = _get_params(dict(np.load(f)))

    return jax.jit(reconstruct_masks, backend='cpu')

_SEGMENT_DETECT_RE = re.compile(
    r'(.*?)' +
    r'<loc(\d{4})>' * 4 + r'\s*' +
    '(?:%s)?' % (r'<seg(\d{3})>' * 16) +
    r'\s*([^;<>]+)? ?(?:; )?',
)

_MODEL_PATH = 'vae-oid.npz'

def extract_objs(text, width, height, unique_labels=False):
    objs = []
    seen = set()
    while text:
        m = _SEGMENT_DETECT_RE.match(text)
        if not m:
            break
            
        gs = list(m.groups())
        before = gs.pop(0)
        name = gs.pop()
        y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]]
        
        y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
        seg_indices = gs[4:20]
        if seg_indices[0] is None:
            mask = None
        else:
            seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32)
            m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0]
            m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1)
            m64 = PIL.Image.fromarray((m64 * 255).astype('uint8'))
            mask = np.zeros([height, width])
            if y2 > y1 and x2 > x1:
                mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0

        content = m.group()
        if before:
            objs.append(dict(content=before))
            content = content[len(before):]
        while unique_labels and name in seen:
            name = (name or '') + "'"
        seen.add(name)
        objs.append(dict(
            content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name))
        text = text[len(before) + len(content):]

    if text:
        objs.append(dict(content=text))

    return objs

with gr.Blocks() as demo:
    with gr.Tab("Text Generation"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil", width=512, height=512)
                text_input = gr.Text(label="Input Text")
            with gr.Column():
                text_output = gr.Text(label="Text Output")
        chat_btn = gr.Button()
        tokens = gr.Slider(
            label="Max New Tokens",
            minimum=10,
            maximum=200,
            value=20,
            step=10,
        )

        chat_btn.click(
            fn=infer,
            inputs=[image, text_input, tokens],
            outputs=[text_output],
        )

    with gr.Tab("Segment/Detect"):
        with gr.Row():
            with gr.Column():
                image = gr.Image(type="pil")
                seg_input = gr.Text(label="Entities to Segment/Detect")
                seg_btn = gr.Button("Submit")
            with gr.Column():
                annotated_image = gr.AnnotatedImage(label="Output")
        
        seg_btn.click(
            fn=parse_segmentation,
            inputs=[image, seg_input],
            outputs=[annotated_image],
        )

if __name__ == "__main__":
    demo.queue(max_size=10).launch(debug=True)