Spaces:
Sleeping
Sleeping
File size: 6,413 Bytes
abed9dd ae274fc 249f47f 31a98e0 4f262bf afeb14b 249f47f 3f30de8 249f47f ae274fc 4adfe65 249f47f 4adfe65 249f47f ae274fc 249f47f ae274fc 249f47f abed9dd 8ce7d79 abed9dd 2c6942f 249f47f faac8da abed9dd 249f47f f0d8be5 8ce7d79 249f47f 873ccb3 5a1795d 249f47f 06d3491 249f47f 19c4612 b1dda8a ca8be06 b1dda8a c9995a0 ca8be06 19c4612 b1dda8a 19c4612 78a0b1e 76c7f05 7687287 249f47f abed9dd 249f47f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import spaces
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr
text_generator = None
is_hugging_face = False
def init():
global text_generator
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if not huggingface_token:
pass
print("no HUGGINGFACE_TOKEN if you need set secret ")
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
model_id = "google/gemma-2b"
model_id = "Qwen/Qwen2.5-0.5B-Instruct"
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
#device = "cuda"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
print(model_id,device,dtype)
histories = []
#model = None
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
if not is_hugging_face:
if next(model.parameters()).is_cuda:
print("The model is on a GPU")
else:
print("The model is on a CPU")
#print(f"text_generator.device='{text_generator.device}")
if str(text_generator.device).strip() == 'cuda':
print("The pipeline is using a GPU")
else:
print("The pipeline is using a CPU")
print("initialized")
@spaces.GPU
def generate_text(messages):
global text_generator
if is_hugging_face:#need everytime initialize for ZeroGPU
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
result = text_generator(messages, max_new_tokens=32, do_sample=True, temperature=0.7)
generated_output = result[0]["generated_text"]
if isinstance(generated_output, list):
for message in reversed(generated_output):
if message.get("role") == "assistant":
content= message.get("content", "No content found.")
return content
return "No assistant response found."
else:
return "Unexpected output format."
def call_generate_text(message, history):
if len(message) == 0:
message.append({"role": "system", "content": "you response around 10 words"})
# history.append({"role": "user", "content": message})
print(message)
print(history)
messages = history+[{"role":"user","content":message}]
try:
text = generate_text(messages)
messages += [{"role":"assistant","content":text}]
return "",messages
except RuntimeError as e:
print(f"An unexpected error occurred: {e}")
return "",history
head = '''
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web/dist/ort.webgpu.min.js" ></script>
<script type="module">
import { MatchaTTSRaw } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/matcha_tts_raw.js";
import { webWavPlay } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/web_wav_play.js";
import { arpa_to_ipa } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/arpa_to_ipa.js";
import { loadCmudict } from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/cmudict_loader.js";
import { env,textToArpa} from "https://akjava.github.io/Matcha-TTS-Japanese/js-esm/text_to_arpa.js";
env.allowLocalModels = true;
env.localModelPath = "https://akjava.github.io/Matcha-TTS-Japanese/models/";
env.backends.onnx.logLevel = "fatal";
let matcha_tts_raw;
let cmudict ={};
let speaking = false;
async function main(text,speed=1.0,tempature=0.5,spk=0) {
console.log(text)
if (speaking){
console.log("speaking return")
}
speaking = true
console.log("main called")
if(!matcha_tts_raw){
matcha_tts_raw = new MatchaTTSRaw()
console.time("load model");
await matcha_tts_raw.load_model('https://huggingface.co./spaces/Akjava/matcha-tts-onnx-benchmarks/resolve/main/models/matcha-tts/ljspeech_sim.onnx',{ executionProviders: ['webgpu','wasm'] });
console.timeEnd("load model");
let cmudictReady = loadCmudict(cmudict,'https://akjava.github.io/Matcha-TTS-Japanese/dictionaries/cmudict-0.7b')
await cmudictReady
}else{
console.log("session exist skip load model")
}
const arpa_text = await textToArpa(cmudict,text)
const ipa_text = arpa_to_ipa(arpa_text).replace(/\s/g, "");
console.log(ipa_text)
const spks = 0
console.time("infer");
const result = await matcha_tts_raw.infer(ipa_text, tempature, speed,spks);
if (result!=null){
console.timeEnd("infer");
webWavPlay(result)
}
speaking = false
}
window.MatchaTTSEn = main
console.log(MatchaTTSRaw)
</script>
'''
with gr.Blocks(title="LLM with TTS",head=head) as demo:
gr.Markdown("## Please be patient, the first response may have a delay of up to 20 seconds while loading.")
gr.Markdown("**Qwen2.5-0.5B-Instruct/LJSpeech**.LLM and TTS models will change without notice.")
js = """
function(chatbot){
text = (chatbot[chatbot.length -1])["content"]
window.MatchaTTSEn(text)
}
"""
chatbot = gr.Chatbot(type="messages")
chatbot.change(None,[chatbot],[],js=js)
msg = gr.Textbox()
clear = gr.ClearButton([msg, chatbot])
#demo = gr.ChatInterface(call_generate_text,chatbot=chatbot,type="messages")
msg.submit(call_generate_text, [msg, chatbot], [msg, chatbot])
if __name__ == "__main__":
init()
demo.launch(share=True) |