Spaces:
Running
Running
File size: 14,863 Bytes
455f718 43d4d0a efd633c 43d4d0a efd633c 43d4d0a efd633c 43d4d0a 2966e05 efd633c 2966e05 43d4d0a efd633c 43d4d0a efd633c 43d4d0a efd633c 43d4d0a efd633c 43d4d0a efd633c 43d4d0a 455f718 43d4d0a c4767a5 43d4d0a df259fb cc5c6d9 ec80e4b efd633c 845d6a6 efd633c 766a3c6 efd633c 9ce7f8d efd633c 766a3c6 efd633c 926c563 efd633c 766a3c6 efd633c 766a3c6 efd633c 50c94bc efd633c 50c94bc 9ce7f8d 2af69e9 9ce7f8d 2af69e9 50c94bc 2af69e9 766a3c6 2af69e9 cd8bb47 2af69e9 efd633c 2af69e9 9ce7f8d 2af69e9 926c563 2af69e9 0960551 2af69e9 efd633c 2af69e9 efd633c 2af69e9 efd633c 2af69e9 9ce7f8d 2af69e9 efd633c 2af69e9 401cfef 2966e05 401cfef 2966e05 401cfef 2966e05 401cfef 2966e05 401cfef 2966e05 401cfef 2966e05 401cfef 2966e05 401cfef 2966e05 401cfef efd633c 845d6a6 208af4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.staticfiles import StaticFiles
from fastapi.responses import RedirectResponse
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer, MarianMTModel, MarianTokenizer
import shutil
#
import os
import logging
from PyPDF2 import PdfReader
import docx
from PIL import Image
import openpyxl
from pptx import Presentation
import fitz
import io
from docx import Document
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import re
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
import matplotlib
matplotlib.use('Agg')
import re
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
import shutil
import os
import logging
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import docx
from PIL import Image # Pour ouvrir les images avant analyse
from transformers import MarianMTModel, MarianTokenizer
import os
import fitz
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import logging
import openpyxl
from fastapi.responses import FileResponse, RedirectResponse, JSONResponse
from fastapi.staticfiles import StaticFiles
from io import BytesIO
from pdfminer.high_level import extract_text
from docx import Document
import pandas as pd
from pptx import Presentation
import logging
from transformers import pipeline
from PIL import Image
import io
import docx2txt
from fastapi.responses import StreamingResponse
from io import BytesIO
import base64
# Configuration du logging
logging.basicConfig(level=logging.INFO)
app = FastAPI()
# Configuration CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "facebook/m2m100_418M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Fonction pour extraire le texte
def extract_text_from_pdf(file):
doc = fitz.open(stream=file.file.read(), filetype="pdf")
return "\n".join([page.get_text() for page in doc]).strip()
def extract_text_from_docx(file):
doc = Document(io.BytesIO(file.file.read()))
return "\n".join([para.text for para in doc.paragraphs]).strip()
def extract_text_from_pptx(file):
prs = Presentation(io.BytesIO(file.file.read()))
return "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]).strip()
def extract_text_from_excel(file):
wb = openpyxl.load_workbook(io.BytesIO(file.file.read()), data_only=True)
text = [str(cell) for sheet in wb.worksheets for row in sheet.iter_rows(values_only=True) for cell in row if cell]
return "\n".join(text).strip()
@app.post("/translate/")
async def translate_document(file: UploadFile = File(...), target_lang: str = Form(...)):
"""API pour traduire un document."""
try:
logging.info(f"📥 Fichier reçu : {file.filename}")
logging.info(f"🌍 Langue cible reçue : {target_lang}")
if model is None or tokenizer is None:
return JSONResponse(status_code=500, content={"error": "Modèle de traduction non chargé"})
# Extraction du texte
if file.filename.endswith(".pdf"):
text = extract_text_from_pdf(file)
elif file.filename.endswith(".docx"):
text = extract_text_from_docx(file)
elif file.filename.endswith(".pptx"):
text = extract_text_from_pptx(file)
elif file.filename.endswith(".xlsx"):
text = extract_text_from_excel(file)
else:
return JSONResponse(status_code=400, content={"error": "Format non supporté"})
logging.info(f"📜 Texte extrait : {text[:50]}...")
if not text:
return JSONResponse(status_code=400, content={"error": "Aucun texte trouvé dans le document"})
target_lang_id = tokenizer.get_lang_id(target_lang)
if target_lang_id is None:
return JSONResponse(
status_code=400,
content={"error": f"Langue cible '{target_lang}' non supportée. Langues disponibles : {list(tokenizer.lang_code_to_id.keys())}"}
)
tokenizer.src_lang = "fr"
encoded_text = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
logging.info(f"🔍 ID de la langue cible : {target_lang_id}")
generated_tokens = model.generate(**encoded_text, forced_bos_token_id=target_lang_id)
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logging.info(f"✅ Traduction réussie : {translated_text[:50]}...")
return {"translated_text": translated_text}
except Exception as e:
logging.error(f"❌ Erreur lors de la traduction : {e}")
return JSONResponse(status_code=500, content={"error": "Échec de la traduction"})
codegen_model_name = "Salesforce/codegen-350M-mono"
device = "cuda" if torch.cuda.is_available() else "cpu"
codegen_tokenizer = AutoTokenizer.from_pretrained(codegen_model_name)
codegen_model = AutoModelForCausalLM.from_pretrained(codegen_model_name).to(device)
VALID_PLOTS = {"histplot", "scatterplot", "barplot", "lineplot", "boxplot"}
print("hello")
@app.post("/generate_viz/")
async def generate_viz(file: UploadFile = File(...), query: str = Form(...)):
print("🔵 Début /generate_viz")
try:
if query not in VALID_PLOTS:
return JSONResponse(content={"error": f"Type de graphique invalide. Choisissez parmi : {', '.join(VALID_PLOTS)}"}, status_code=400)
file_content = await file.read()
df = pd.read_excel(BytesIO(file_content))
numeric_cols = df.select_dtypes(include=["number"]).columns
if len(numeric_cols) < 1:
return JSONResponse(content={"error": "Le fichier doit contenir au moins une colonne numérique."}, status_code=400)
x_col = numeric_cols[0]
y_col = numeric_cols[1] if query != "histplot" and len(numeric_cols) > 1 else None
prompt = f"""
### Génère uniquement du code Python fonctionnel pour tracer un {query} avec Matplotlib et Seaborn
```python
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(8,6))
sns.{query}(data=df, x="{x_col}"{f', y="{y_col}"' if y_col else ''})
plt.savefig("plot.png")
plt.close()
"""
print("🟣 Prompt envoyé au modèle :")
print(prompt)
inputs = codegen_tokenizer(prompt, return_tensors="pt").to(device)
outputs = codegen_model.generate(
**inputs,
max_new_tokens=150,
pad_token_id=codegen_tokenizer.eos_token_id
)
generated_code = codegen_tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
# Nettoyage : retirer tout ce qui n'est pas du vrai code
generated_code = re.sub(r"^.*?```python", "", generated_code, flags=re.DOTALL)
generated_code = re.sub(r"```.*?$", "", generated_code, flags=re.DOTALL).strip()
print("🔵 Code généré propre :")
print(generated_code)
if not generated_code.strip():
return JSONResponse(content={"error": "Erreur : Code généré vide."}, status_code=500)
try:
compile(generated_code, "<string>", "exec")
except SyntaxError as e:
return JSONResponse(content={"error": f"Erreur de syntaxe détectée : {e}\nCode généré :\n{generated_code}"}, status_code=422)
exec_env = {"df": df, "plt": plt, "sns": sns, "pd": pd}
print("🔹🔹🔹 Code réellement exécuté :")
exec(generated_code, exec_env)
img_path = "plot.png"
if not os.path.exists(img_path):
return JSONResponse(content={"error": "Le fichier plot.png n'a pas été généré."}, status_code=500)
if os.path.getsize(img_path) == 0:
return JSONResponse(content={"error": "Le fichier plot.png est vide."}, status_code=500)
with open(img_path, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
print("🟢 Génération réussie ✅")
return JSONResponse(content={"image_base64": encoded_string})
except Exception as e:
print(f"🔴 Erreur serveur : {e}")
return JSONResponse(content={"error": f"Erreur lors de la génération du graphique : {str(e)}"}, status_code=500)
summarizer = None
try:
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
logging.info("✅ Modèle de résumé chargé avec succès !")
except Exception as e:
logging.error(f"❌ Erreur chargement modèle résumé : {e}")
try:
image_captioning = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
logging.info("✅ Modèle d'image chargé avec succès !")
except Exception as e:
image_captioning = None
logging.error(f"❌ Erreur chargement modèle image : {e}")
def extract_text_from_docx(docx_file):
doc = Document(BytesIO(docx_file))
text = "\n".join([para.text for para in doc.paragraphs])
return text
def extract_text_from_excel(xlsx_file):
df = pd.read_excel(BytesIO(xlsx_file))
text = df.to_string(index=False)
return text
def extract_text_from_pptx(pptx_file):
presentation = Presentation(BytesIO(pptx_file))
text = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text += shape.text + "\n"
return text
@app.post("/summarize/")
async def summarize(file: UploadFile = File(...)):
if summarizer is None:
return {"message": "Le modèle est en cours de chargement, veuillez patienter..."}
contents = await file.read()
if file.filename.endswith(".pdf"):
text = extract_text(BytesIO(contents))
elif file.filename.endswith(".docx"):
text = extract_text_from_docx(contents)
elif file.filename.endswith(".xls") or file.filename.endswith(".xlsx"):
text = extract_text_from_excel(contents)
elif file.filename.endswith(".pptx") or file.filename.endswith(".ppt"):
text = extract_text_from_pptx(contents)
else:
return {"summary": "Résumé non disponible pour ce format de fichier."}
try:
if summarizer:
summary = summarizer(text[:1024])
summary_text = summary[0]['summary_text']
else:
summary_text = "❌ Modèle de résumé non disponible."
except Exception as e:
summary_text = f"❌ Erreur lors de la génération du résumé : {e}"
return {"summary": summary_text}
@app.post("/image-caption/")
async def caption_image(file: UploadFile = File(...)):
if image_captioning is None:
return JSONResponse(content={"error": "Le modèle de captioning n'est pas disponible."}, status_code=500)
try:
contents = await file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
result = image_captioning(image)
caption = result[0]['generated_text']
return {"caption": caption}
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
try:
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
logging.info("✅ Modèle QA Texte chargé avec succès !")
except Exception as e:
qa_pipeline = None
logging.error(f"❌ Erreur chargement modèle QA Texte : {e}")
try:
image_qa_pipeline = pipeline("visual-question-answering", model="Salesforce/blip-vqa-base")
logging.info("✅ Modèle QA Image chargé avec succès !")
except Exception as e:
image_qa_pipeline = None
logging.error(f"❌ Erreur chargement modèle QA Image : {e}")
@app.post("/doc-qa/")
async def doc_question_answer(file: UploadFile = File(...), question: str = Form(...)):
if qa_pipeline is None:
return JSONResponse(content={"error": "Modèle indisponible."}, status_code=500)
try:
contents = await file.read()
filename = file.filename.lower()
if filename.endswith(".docx"):
with open("temp.docx", "wb") as f:
f.write(contents)
context = docx2txt.process("temp.docx")
elif filename.endswith((".xlsx", ".xls")):
df = pd.read_excel(BytesIO(contents))
context = df.to_string(index=False)
elif filename.endswith(".pptx"):
presentation = Presentation(BytesIO(contents))
context = ""
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
context += shape.text + "\n"
elif filename.endswith(".pdf"):
context = extract_text(BytesIO(contents))
else:
return JSONResponse(content={"error": "Format non supporté."}, status_code=400)
result = qa_pipeline(question=question, context=context)
return {"answer": result["answer"]}
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/image-qa/")
async def image_qa(file: UploadFile = File(...), question: str = Form(...)):
if image_qa_pipeline is None:
return JSONResponse(content={"error": "Le modèle n'est pas disponible."}, status_code=500)
try:
contents = await file.read()
image = Image.open(io.BytesIO(contents)).convert("RGB")
result = image_qa_pipeline(image=image, question=question)
answer = result[0]['answer']
return {"answer": answer}
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
app.mount("/static", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
async def root():
return RedirectResponse(url="/static/principal.html") |