Spaces:
Running
Running
############################################################################# | |
# Title: BERUFENET.AI | |
# Author: Andreas Fischer | |
# Date: January 4th, 2024 | |
# Last update: October 15th, 2024 | |
############################################################################# | |
import os | |
import chromadb | |
from chromadb import Documents, EmbeddingFunction, Embeddings | |
from chromadb.utils import embedding_functions | |
import torch # chromaDB | |
from transformers import AutoTokenizer, AutoModel # chromaDB | |
from huggingface_hub import InferenceClient # Gradio-Interface | |
import gradio as gr # Gradio-Interface | |
import json # Gradio-Interface | |
dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db" | |
if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db" | |
print(dbPath) | |
# Chroma-DB | |
#----------- | |
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16) | |
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de") | |
device='cuda:0' if torch.cuda.is_available() else 'cpu' | |
jina.to(device) #cuda:0 | |
print(device) | |
class JinaEmbeddingFunction(EmbeddingFunction): | |
def __call__(self, input: Documents) -> Embeddings: | |
embeddings = jina.encode(input) #max_length=2048 | |
return(embeddings.tolist()) | |
path=dbPath | |
client = chromadb.PersistentClient(path=path) | |
print(client.heartbeat()) | |
print(client.get_version()) | |
print(client.list_collections()) | |
#default_ef = embedding_functions.DefaultEmbeddingFunction() | |
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
jina_ef=JinaEmbeddingFunction() | |
embeddingFunction=jina_ef | |
print(str(client.list_collections())) | |
global collection | |
if("name=BerufenetDB1" in str(client.list_collections())): | |
print("BerufenetDB1 found!") | |
collection = client.get_collection(name="BerufenetDB1", embedding_function=embeddingFunction) | |
print("Database ready!") | |
print(collection.count()) | |
# Gradio-GUI | |
#------------ | |
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
def format_prompt(message, history): | |
prompt = "" #"<s>" | |
#for user_prompt, bot_response in history: | |
# prompt += f"[INST] {user_prompt} [/INST]" | |
# prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def response(prompt, history, hfToken): | |
inferenceClient="" | |
if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided | |
inferenceClient = InferenceClient(model=myModel, token=hfToken) | |
else: | |
inferenceClient = InferenceClient(myModel) | |
generate_kwargs = dict(temperature=float(0.9), max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42) | |
addon="" | |
results=collection.query( | |
query_texts=[prompt], | |
n_results=5 | |
) | |
dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] | |
sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]] | |
results=results['documents'][0] | |
combination = zip(results,dists,sources) | |
combination = [' '.join(triplets) for triplets in combination] | |
print(str(prompt)+"\n\n"+str(combination)) | |
if(len(results)>1): | |
addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) | |
system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete Berufe empfiehlt."+addon+"\n\nUser-Anliegen:" | |
formatted_prompt = format_prompt(system+"\n"+prompt, history) | |
output = "" | |
print(""+str(inferenceClient)) | |
try: | |
stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
for response in stream: | |
output += response.token.text | |
yield output | |
except Exception as e: | |
output = "Für weitere Antworten von der KI gebe bitte einen gültigen HuggingFace-Token an." | |
if(len(combination)>0): | |
output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:" | |
yield output | |
print(str(e)) | |
output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" | |
yield output | |
gr.ChatInterface( | |
response, | |
chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten passenden Berufe empfiehlt.<br>Erzähle mir, was du gerne tust!"]],render_markdown=True), | |
title="BERUFENET.AI (Jina-Embeddings)", | |
additional_inputs=[ | |
gr.Textbox( | |
value="", | |
label="HF_token"), | |
] | |
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
print("Interface up and running!") | |