File size: 5,520 Bytes
8157e89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from flask import Flask,request, send_file
import os
import io
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision.datasets import ImageFolder
import torchvision.transforms as transforms
from PIL import Image
import matplotlib.pyplot as plt
from datetime import datetime

app = Flask(__name__)
 
@app.route('/', methods=['GET'])
def dummy_get():
        return "Welcome to Flask App"

@app.route('/upload', methods=['POST'])
def upload_file():
        class CNN_Stage3(nn.Module):
            def __init__(self, in_channels, out_channels):
                super(CNN_Stage3, self).__init__()
                self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, dilation=2, padding=1)
                self.relu = nn.ReLU()
                self.pool = nn.MaxPool2d(kernel_size=2, stride=1)

            def forward(self, x):
                x = self.conv1(x)
                x = self.relu(x)
                x = self.pool(x)
                x = self.relu(x)
                return x

        class CNN_Stage1(nn.Module):
            def __init__(self, in_channels, out_channels):
                super(CNN_Stage1, self).__init__()
                self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=5, stride=1, padding=1)
                self.relu = nn.ReLU()
                self.pool = nn.MaxPool2d(kernel_size=2, stride=1)

            def forward(self, x):
                x = self.conv1(x)
                x = self.relu(x)
                x = self.pool(x)
                x = self.relu(x)
                return x

        class CNN(nn.Module):
            def __init__(self, num_classes):
                super(CNN, self).__init__()
                self.cnn_stage_1 = CNN_Stage1(3, 6)
                self.cnn_stage_2 = CNN_Stage1(6, 12)
                self.cnn_stage_3 = CNN_Stage3(12, 24)
                self.cnn_stage_4 = CNN_Stage1(24, 48)
                self.cnn_stage_5 = CNN_Stage1(48, 96)
                self.fc1 = nn.Linear(96 * 3 * 3, 64)
                self.fc2 = nn.Linear(64, num_classes)
                self.relu = nn.ReLU()

            def forward(self, x):
                x = self.cnn_stage_1(x)
                x = self.cnn_stage_2(x)
                x = self.cnn_stage_3(x)
                x = self.cnn_stage_4(x)
                x = self.cnn_stage_5(x)
                x = x.view(x.size(0), -1)
                x = self.fc1(x)
                x = self.relu(x)
                x = self.fc2(x)
                return x

        class CustomDataset(Dataset):
            def __init__(self, root_dir, transform=None):
                self.dataset = ImageFolder(root_dir, transform=transform)
                self.classes = self.dataset.classes

            def __len__(self):
                return len(self.dataset)

            def __getitem__(self, idx):
                image, label = self.dataset[idx]
                return image, label

        # Example usage:
        dataset_path = 'aug_data'


        transform = transforms.Compose([
            transforms.Resize((22, 22)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        ])

        custom_dataset = CustomDataset(root_dir=dataset_path, transform=transform)

        num_classes = len(custom_dataset.classes)
        batch_size = 32

        data_loader = DataLoader(custom_dataset, batch_size=batch_size, shuffle=True)

        model = CNN(num_classes)

        optimizer = optim.Adam(model.parameters(), lr=0.001)

        # Load the model
        
        checkpoint = torch.load("model_cnn_final.pth")
        model.load_state_dict(checkpoint['model_state_dict'])

        # Assuming optimizer was saved in the checkpoint
        optimizer = optim.Adam(model.parameters(), lr=0.001)
        optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
        epoch = checkpoint['epoch']
        loss = checkpoint['loss']


        # Print model's parameter names
        for name, param in model.named_parameters():
            print(name)

        if 'file' not in request.files:
            return 'No file part'
        
        file = request.files['file']

           # Generate a unique filename using a timestamp
        timestamp = datetime.now().strftime('%Y%m%d%H%M%S')
        unique_filename = f"{timestamp}_{file.filename}"

        
        file.save(f'uploads/{unique_filename}')
        

        input_image = Image.open(f'uploads/{unique_filename}')
        input_tensor = transform(input_image)
        input_batch = input_tensor.unsqueeze(0) 

        # Use the loaded model to make predictions
        with torch.no_grad():
            output = model(input_batch)

             
        # If the user does not select a file, the browser submits an empty file without a filename
        if file.filename == '':
            return 'No selected file'
        else:
              # Interpret the predictions
            class_names = ['cancer', 'no- cancer']
            _, predicted_class = torch.max(output, 1)
            predicted_label = class_names[predicted_class.item()]
            print(f'The image is classified as: {predicted_label}')

            plt.imshow(input_image)
            # print(f'The image is classified as: {predicted_label}')
            return f'The image is classified as: {predicted_label}'
 
         
 
if __name__ == "__main__":
    app.run(host='0.0.0.0',debug=True, port=5000)