Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,841 Bytes
17cd746 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import glob
import json
import os.path as osp
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import seaborn as sns
from pandas import DataFrame
import pandas as pd
def L2(p1, p2):
return np.linalg.norm(p1 - p2)
def NME(landmarks_gt, landmarks_pv):
pts_num = landmarks_gt.shape[0]
if pts_num == 29:
left_index = 16
right_index = 17
elif pts_num == 68:
left_index = 36
right_index = 45
elif pts_num == 98:
left_index = 60
right_index = 72
nme = 0
eye_span = L2(landmarks_gt[left_index], landmarks_gt[right_index])
nmeList = []
for i in range(pts_num):
error = L2(landmarks_pv[i], landmarks_gt[i])
_nme = error / eye_span
nmeList.append(_nme)
nme += _nme
nme /= pts_num
return nme, nmeList
def NME_analysis(listA):
for jsonA in listA:
pred = np.array(jsonA['pred'])
gt = np.array(jsonA['gt'])
nme, nmeList = NME(gt, pred)
jsonA['nme'] = nme
jsonA['nmeList'] = nmeList
return listA
def nme_analysis(listA):
bdy_nmeList = []
scene_nmeList = []
for jsonA in tqdm(listA):
nme = jsonA['nmeList']
nme = np.array(nme)
bdy_nme = np.mean(nme[:33])
scene_nme = np.mean(nme[33:])
# scene_nme = np.mean(nme[[33, 35, 40, 38,
# 60, 62, 96, 66, 64,
# 50, 44, 48, 46,
# 68, 70, 97, 74, 72,
# 54, 55, 57, 59,
# 76, 82, 79, 90, 94, 85, 16]])
bdy_nmeList.append(bdy_nme)
scene_nmeList.append(scene_nme)
print('bdy nme: {:.4f}'.format(np.mean(bdy_nmeList)))
print('scene_nmeList: {:.4f}'.format(np.mean(scene_nmeList)))
def Energy_analysis(listA, easyThresh=0.02, easyNum=10, hardThresh=0.07, hardNum=10):
easyDict = {'energy': [], 'nme': []}
hardDict = {'energy': [], 'nme': []}
_easyNum, _hardNum = 0, 0
def cal_energy(evalues):
evalues = np.array(evalues)
# _energy = _energy.max(1)
eccentricity = evalues.max(1) / evalues.min(1)
# _energy = _energy.sum() / 2
_energy = np.mean(eccentricity)
return _energy
for jsonA in tqdm(listA):
nme = jsonA['nme']
evalues = jsonA['evalues']
if _easyNum == easyNum and _hardNum == hardNum:
break
if nme < easyThresh and _easyNum < easyNum:
energy = cal_energy(evalues)
easyDict['energy'].append(energy)
easyDict['nme'].append(nme)
_easyNum += 1
elif nme > hardThresh and _hardNum < hardNum:
energy = cal_energy(evalues)
hardDict['energy'].append(energy)
hardDict['nme'].append(nme)
_hardNum += 1
print('easyThresh: < {}; hardThresh > {}'.format(easyThresh, hardThresh))
print(' |nme |energy |num |')
print('easy samples: |{:.4f} |{:.4f} |{} |'.format(np.mean(easyDict['nme']),
np.mean(easyDict['energy']),
len(easyDict['energy'])))
print('hard samples: |{:.4f} |{:.4f} |{} |'.format(np.mean(hardDict['nme']),
np.mean(hardDict['energy']),
len(hardDict['energy'])))
return easyDict, hardDict
def Eccentricity_analysis(listA):
eyecornerList = []
boundaryList = []
for jsonA in listA:
evalues = np.array(jsonA['evalues'])
eccentricity = evalues.max(1) / evalues.min(1)
eyecorner = np.mean(eccentricity[[60, 64, 68, 72]])
boundary = np.mean(eccentricity[0:33])
eyecornerList.append(eyecorner)
boundaryList.append(boundary)
print('eyecorner: {:.4f}'.format(np.mean(eyecornerList)))
print('boundary: {:.4f}'.format(np.mean(boundaryList)))
return eyecornerList, boundaryList
def plot_bar(dataList):
x = list(range(98))
assert len(x) == len(dataList)
_x = 'Landmark Index'
# _y = 'elliptical eccentricity (λ1/λ2)'
_y = 'PCA Analyze (λ1/λ2)'
data = {
_x: x,
_y: dataList
}
df = DataFrame(data)
plt.figure(figsize=(10, 4))
sns.barplot(x=_x, y=_y, data=df)
plt.show()
def Eccentricity_analysis2(listA, is_vis=False):
landmarksList = [[] for i in range(98)]
for jsonA in listA:
evalues = np.array(jsonA['evalues'])
eccentricity = evalues.max(1) / evalues.min(1)
for i, e in enumerate(eccentricity):
landmarksList[i].append(e)
print('Mean value: {:.4f}'.format(np.mean(np.array(landmarksList))))
landmarksList = [np.mean(l) for l in landmarksList]
if is_vis:
plot_bar(landmarksList)
return landmarksList
def std_analysis2():
save_dir = '/apdcephfs/share_1134483/charlinzhou/experiment/cvpr-23/wflw_results'
# l2_npy = glob.glob(osp.join(save_dir, '*DSNT*.npy'))
l2_npy = glob.glob(osp.join(save_dir, '*MHNLoss_v2_l2*.npy'))
def npy2std(npyList):
datas = [np.load(npy)[np.newaxis, :] for npy in npyList]
datas = np.concatenate(datas, axis=0)
# denormalization
datas = (datas + 1) * 256 / 2
mean = datas.mean(axis=0)[np.newaxis, :]
dist = np.linalg.norm(datas - mean, axis=-1)
std = np.std(dist, 0)
print('min: {}, max:{}, mean:{}'.format(std.min(), std.max(), std.mean()))
return std
std1 = npy2std(l2_npy)
std1 = std1.mean(0)
# plot_bar(std1)
bdy_std = np.mean(std1[:33])
cofw_std = np.mean(std1[[33, 35, 40, 38,
60, 62, 96, 66, 64,
50, 44, 48, 46,
68, 70, 97, 74, 72,
54, 55, 57, 59,
76, 82, 79, 90, 94, 85, 16]])
print('bdy_std: {:.4f}, cofw_std: {:.4f}'.format(bdy_std, cofw_std))
print('the ratio of Boundary std and ALL std: {:.4f} / {:.4f}'.format(np.sum(std1[:33]), np.sum(std1)))
if __name__ == '__main__':
# 4.29模型
json_path = '/apdcephfs/share_1134483/charlinzhou/ckpts/STAR/WFLW/WFLW_256x256_adam_ep500_lr0.001_bs128_STARLoss_smoothl1_1_b0183746-161a-4b76-9cb9-8a2059090233/results.json'
# 无初始化
# json_path = '/apdcephfs/share_1134483/charlinzhou/ckpts/STAR/WFLW/WFLW_256x256_adam_ep500_lr0.001_bs128_STARLoss_smoothl1_1_9cff3656-8ca8-4c3d-a95d-da76f9f76ea5/results.json'
# 4.02模型
# json_path = '/apdcephfs/share_1134483/charlinzhou/ckpts/STAR/WFLW/WFLW_256x256_adam_ep500_lr0.001_bs128_STARLoss_smoothl1_1_AAM_2d2bb70e-6fdb-459c-baf7-18c89e7a165f/results.json'
listA = json.load(open(json_path, 'r'))
print('Load Done!')
listA = NME_analysis(listA)
print('NME analysis Done!')
# Exp1: 分析简单样本和困难样本的能量差异
easyDict, hardDict = Energy_analysis(listA, easyNum=2500, hardNum=2500, easyThresh=0.03, hardThresh=0.08)
# Exp2.1: 分析眼角点和轮廓点的斜率差异
# eyecornerList, boundaryList = Eccentricity_analysis(listA)
# Exp2.2: 可视化所有点的斜率分布
# landmarksList = Eccentricity_analysis2(listA, is_vis=True)
# Exp2.3: 可视化所有点的方差分布
# std_analysis2()
# Exp3: 五官和轮廓NME分析
# nme_analysis(listA)
# print(easyDict)
# print(hardDict)
# nmeList = [jsonA['nme'] for jsonA in listA]
# print(len(nmeList))
|