File size: 17,318 Bytes
3e6cbc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
license: apache-2.0
language:
- en
pipeline_tag: image-to-video
library_name: MAGI-1
---

-----
<p align="center" style="line-height: 1;">
<a href="https://static.magi.world/static/files/MAGI_1.pdf" target="_blank" style="margin: 2px;">
<img alt="paper" src="https://img.shields.io/badge/Paper-arXiv-B31B1B?logo=arxiv" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://sand.ai" target="_blank" style="margin: 2px;">
<img alt="blog" src="https://img.shields.io/badge/Sand%20AI-Homepage-333333.svg?logo=" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://magi.sand.ai" target="_blank" style="margin: 2px;">
<img alt="product" src="https://img.shields.io/badge/Magi-Product-logo.svg?logo=&color=DCBE7E" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://huggingface.co./sand-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Sand AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://x.com/SandAI_HQ" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-Sand%20AI-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://discord.gg/hgaZ86D7Wv" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-Sand%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;">
</a>
<a href="https://github.com/SandAI-org/Magi/LICENSE" target="_blank" style="margin: 2px;">
<img alt="license" src="https://img.shields.io/badge/License-Apache2.0-green?logo=Apache" style="display: inline-block; vertical-align: middle;">
</a>
</p>
# MAGI-1: Autoregressive Video Generation at Scale
This repository contains the code for the MAGI-1 model, pre-trained weights and inference code. You can find more information on our [technical report](https://static.magi.world/static/files/MAGI_1.pdf) or directly create magic with MAGI-1 [here](http://sand.ai) . 🚀✨
## 🔥🔥🔥 Latest News
- Apr 21, 2025: MAGI-1 is here 🎉. We've released the model weights and inference code — check it out!
## 1. About
We present MAGI-1, a world model that generates videos by ***autoregressively*** predicting a sequence of video chunks, defined as fixed-length segments of consecutive frames. Trained to denoise per-chunk noise that increases monotonically over time, MAGI-1 enables causal temporal modeling and naturally supports streaming generation. It achieves strong performance on image-to-video (I2V) tasks conditioned on text instructions, providing high temporal consistency and scalability, which are made possible by several algorithmic innovations and a dedicated infrastructure stack. MAGI-1 further supports controllable generation via chunk-wise prompting, enabling smooth scene transitions, long-horizon synthesis, and fine-grained text-driven control. We believe MAGI-1 offers a promising direction for unifying high-fidelity video generation with flexible instruction control and real-time deployment.
## 2. Model Summary
### Transformer-based VAE
- Variational autoencoder (VAE) with transformer-based architecture, 8x spatial and 4x temporal compression.
- Fastest average decoding time and highly competitive reconstruction quality
### Auto-Regressive Denoising Algorithm
MAGI-1 is an autoregressive denoising video generation model generating videos chunk-by-chunk instead of as a whole. Each chunk (24 frames) is denoised holistically, and the generation of the next chunk begins as soon as the current one reaches a certain level of denoising. This pipeline design enables concurrent processing of up to four chunks for efficient video generation.

### Diffusion Model Architecture
MAGI-1 is built upon the Diffusion Transformer, incorporating several key innovations to enhance training efficiency and stability at scale. These advancements include Block-Causal Attention, Parallel Attention Block, QK-Norm and GQA, Sandwich Normalization in FFN, SwiGLU, and Softcap Modulation. For more details, please refer to the [technical report.](https://static.magi.world/static/files/MAGI_1.pdf)
<div align="center">
<img src="figures/dit_architecture.png" alt="diffusion model architecture" width="500" />
</div>
### Distillation Algorithm
We adopt a shortcut distillation approach that trains a single velocity-based model to support variable inference budgets. By enforcing a self-consistency constraint—equating one large step with two smaller steps—the model learns to approximate flow-matching trajectories across multiple step sizes. During training, step sizes are cyclically sampled from {64, 32, 16, 8}, and classifier-free guidance distillation is incorporated to preserve conditional alignment. This enables efficient inference with minimal loss in fidelity.
## 3. Model Zoo
We provide the pre-trained weights for MAGI-1, including the 24B and 4.5B models, as well as the corresponding distill and distill+quant models. The model weight links are shown in the table.
| Model | Link | Recommend Machine |
| ----------------------------- | ------------------------------------------------------------ | ------------------------------- |
| T5 | [T5](https://huggingface.co./sand-ai/MAGI-1/tree/main/ckpt/t5) | - |
| MAGI-1-VAE | [MAGI-1-VAE](https://huggingface.co./sand-ai/MAGI-1/tree/main/ckpt/vae) | - |
| MAGI-1-24B | [MAGI-1-24B](https://huggingface.co./sand-ai/MAGI-1/tree/main/ckpt/magi/24B_base) | H100/H800 \* 8 |
| MAGI-1-24B-distill | [MAGI-1-24B-distill](https://huggingface.co./sand-ai/MAGI-1/tree/main/ckpt/magi/24B_distill) | H100/H800 \* 8 |
| MAGI-1-24B-distill+fp8_quant | [MAGI-1-24B-distill+quant](https://huggingface.co./sand-ai/MAGI-1/tree/main/ckpt/magi/24B_distill_quant) | H100/H800 \* 4 or RTX 4090 \* 8 |
| MAGI-1-4.5B | MAGI-1-4.5B | RTX 4090 \* 1 |
## 4. Evaluation
### In-house Human Evaluation
MAGI-1 achieves state-of-the-art performance among open-source models (surpassing Wan-2.1 and significantly outperforming Hailuo and HunyuanVideo), particularly excelling in instruction following and motion quality, positioning it as a strong potential competitor to closed-source commercial models such as Kling.

### Physical Evaluation
Thanks to the natural advantages of autoregressive architecture, Magi achieves far superior precision in predicting physical behavior through video continuation—significantly outperforming all existing models.
| Model | Phys. IQ Score ↑ | Spatial IoU ↑ | Spatio Temporal ↑ | Weighted Spatial IoU ↑ | MSE ↓ |
|----------------|------------------|---------------|-------------------|-------------------------|--------|
| **V2V Models** | | | | | |
| **Magi (V2V)** | **56.02** | **0.367** | **0.270** | **0.304** | **0.005** |
| VideoPoet (V2V)| 29.50 | 0.204 | 0.164 | 0.137 | 0.010 |
| **I2V Models** | | | | | |
| **Magi (I2V)** | **30.23** | **0.203** | **0.151** | **0.154** | **0.012** |
| Kling1.6 (I2V) | 23.64 | 0.197 | 0.086 | 0.144 | 0.025 |
| VideoPoet (I2V)| 20.30 | 0.141 | 0.126 | 0.087 | 0.012 |
| Gen 3 (I2V) | 22.80 | 0.201 | 0.115 | 0.116 | 0.015 |
| Wan2.1 (I2V) | 20.89 | 0.153 | 0.100 | 0.112 | 0.023 |
| Sora (I2V) | 10.00 | 0.138 | 0.047 | 0.063 | 0.030 |
| **GroundTruth**| **100.0** | **0.678** | **0.535** | **0.577** | **0.002** |
## 5. How to run
### Environment Preparation
We provide two ways to run MAGI-1, with the Docker environment being the recommended option.
**Run with Docker Environment (Recommend)**
```bash
docker pull sandai/magi:latest
docker run -it --gpus all --privileged --shm-size=32g --name magi --net=host --ipc=host --ulimit memlock=-1 --ulimit stack=6710886 sandai/magi:latest /bin/bash
```
**Run with Source Code**
```bash
# Create a new environment
conda create -n magi python==3.10.12
# Install pytorch
conda install pytorch==2.4.0 torchvision==0.19.0 torchaudio==2.4.0 pytorch-cuda=12.4 -c pytorch -c nvidia
# Install other dependencies
pip install -r requirements.txt
# Install ffmpeg
conda install -c conda-forge ffmpeg=4.4
# Install MagiAttention, for more information, please refer to https://github.com/SandAI-org/MagiAttention#
git clone [email protected]:SandAI-org/MagiAttention.git
cd MagiAttention
git submodule update --init --recursive
pip install --no-build-isolation .
```
### Inference Command
To run the `MagiPipeline`, you can control the input and output by modifying the parameters in the `example/24B/run.sh` or `example/4.5B/run.sh` script. Below is an explanation of the key parameters:
#### Parameter Descriptions
- `--config_file`: Specifies the path to the configuration file, which contains model configuration parameters, e.g., `example/24B/24B_config.json`.
- `--mode`: Specifies the mode of operation. Available options are:
- `t2v`: Text to Video
- `i2v`: Image to Video
- `v2v`: Video to Video
- `--prompt`: The text prompt used for video generation, e.g., `"Good Boy"`.
- `--image_path`: Path to the image file, used only in `i2v` mode.
- `--prefix_video_path`: Path to the prefix video file, used only in `v2v` mode.
- `--output_path`: Path where the generated video file will be saved.
#### Bash Script
```bash
#!/bin/bash
# Run 24B MAGI-1 model
bash example/24B/run.sh
# Run 4.5B MAGI-1 model
bash example/4.5B/run.sh
```
#### Customizing Parameters
You can modify the parameters in `run.sh` as needed. For example:
- To use the Image to Video mode (`i2v`), set `--mode` to `i2v` and provide `--image_path`:
```bash
--mode i2v \
--image_path example/assets/image.jpeg \
```
- To use the Video to Video mode (`v2v`), set `--mode` to `v2v` and provide `--prefix_video_path`:
```bash
--mode v2v \
--prefix_video_path example/assets/prefix_video.mp4 \
```
By adjusting these parameters, you can flexibly control the input and output to meet different requirements.
### Some Useful Configs (for config.json)
| Config | Help |
| -------------- | ------------------------------------------------------------ |
| seed | Random seed used for video generation |
| video_size_h | Height of the video |
| video_size_w | Width of the video |
| num_frames | Controls the duration of generated video |
| fps | Frames per second, 4 video frames correspond to 1 latent_frame |
| cfg_number | Base model uses cfg_number==2, distill and quant model uses cfg_number=1 |
| load | Directory containing a model checkpoint. |
| t5_pretrained | Path to load pretrained T5 model |
| vae_pretrained | Path to load pretrained VAE model |
## 6. License
This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details.
## 7. Citation
If you find our code or model useful in your research, please cite:
```bibtex
@misc{magi1,
title={MAGI-1: Autoregressive Video Generation at Scale},
author={Sand-AI},
year={2025},
url={https://static.magi.world/static/files/MAGI_1.pdf},
}
```
## 8. Contact
If you have any questions, please feel free to raise an issue or contact us at [[email protected]]([email protected]) . |