Upload folder using huggingface_hub
Browse files- generate_example.py +19 -0
- main.py +80 -0
- tokenizer.py +1 -1
generate_example.py
CHANGED
@@ -32,6 +32,11 @@ TEMPERATURE = 0.
|
|
32 |
TOP_K = 1
|
33 |
#######################################
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
url = f"https://huggingface.co/rasbt/llama-3.2-from-scratch/resolve/main/{MODEL_FILE}"
|
36 |
|
37 |
if not os.path.exists(MODEL_FILE):
|
@@ -58,11 +63,25 @@ device = (
|
|
58 |
)
|
59 |
model.to(device)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
tokenizer = Llama3Tokenizer("tokenizer.model")
|
62 |
|
63 |
if "instruct" in MODEL_FILE:
|
64 |
tokenizer = ChatFormat(tokenizer)
|
65 |
|
|
|
|
|
|
|
|
|
66 |
torch.manual_seed(123)
|
67 |
|
68 |
start = time.time()
|
|
|
32 |
TOP_K = 1
|
33 |
#######################################
|
34 |
|
35 |
+
|
36 |
+
###################################
|
37 |
+
# Initialize model
|
38 |
+
##################################
|
39 |
+
|
40 |
url = f"https://huggingface.co/rasbt/llama-3.2-from-scratch/resolve/main/{MODEL_FILE}"
|
41 |
|
42 |
if not os.path.exists(MODEL_FILE):
|
|
|
63 |
)
|
64 |
model.to(device)
|
65 |
|
66 |
+
###################################
|
67 |
+
# Initialize tokenizer
|
68 |
+
##################################
|
69 |
+
TOKENIZER_FILE = "tokenizer.model"
|
70 |
+
|
71 |
+
url = f"https://huggingface.co/rasbt/llama-3.2-from-scratch/resolve/main/{TOKENIZER_FILE}"
|
72 |
+
|
73 |
+
if not os.path.exists(TOKENIZER_FILE):
|
74 |
+
urllib.request.urlretrieve(url, TOKENIZER_FILE)
|
75 |
+
print(f"Downloaded to {TOKENIZER_FILE}")
|
76 |
tokenizer = Llama3Tokenizer("tokenizer.model")
|
77 |
|
78 |
if "instruct" in MODEL_FILE:
|
79 |
tokenizer = ChatFormat(tokenizer)
|
80 |
|
81 |
+
###################################
|
82 |
+
# Generate text
|
83 |
+
##################################
|
84 |
+
|
85 |
torch.manual_seed(123)
|
86 |
|
87 |
start = time.time()
|
main.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
|
2 |
+
# Source for "Build a Large Language Model From Scratch"
|
3 |
+
# https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/07_gpt_to_llama/standalone-llama32.ipynb
|
4 |
+
|
5 |
+
import time
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from model import Llama3Model, generate, text_to_token_ids, token_ids_to_text
|
9 |
+
from tokenizer import Llama3Tokenizer, ChatFormat, clean_text
|
10 |
+
|
11 |
+
#######################################
|
12 |
+
# Model settings
|
13 |
+
|
14 |
+
MODEL_FILE = "llama3.2-1B-instruct.pth"
|
15 |
+
# MODEL_FILE = "llama3.2-1B-base.pth"
|
16 |
+
# MODEL_FILE = "llama3.2-3B-instruct.pth"
|
17 |
+
# MODEL_FILE = "llama3.2-3B-base.pth"
|
18 |
+
|
19 |
+
MODEL_CONTEXT_LENGTH = 8192 # Supports up to 131_072
|
20 |
+
|
21 |
+
# Text generation settings
|
22 |
+
if "instruct" in MODEL_FILE:
|
23 |
+
PROMPT = "What do llamas eat?"
|
24 |
+
else:
|
25 |
+
PROMPT = "Llamas eat"
|
26 |
+
|
27 |
+
MAX_NEW_TOKENS = 150
|
28 |
+
TEMPERATURE = 0.
|
29 |
+
TOP_K = 1
|
30 |
+
#######################################
|
31 |
+
|
32 |
+
if "1B" in MODEL_FILE:
|
33 |
+
from model import LLAMA32_CONFIG_1B as LLAMA32_CONFIG
|
34 |
+
elif "3B" in MODEL_FILE:
|
35 |
+
from model import LLAMA32_CONFIG_3B as LLAMA32_CONFIG
|
36 |
+
else:
|
37 |
+
raise ValueError("Incorrect model file name")
|
38 |
+
|
39 |
+
model = Llama3Model(LLAMA32_CONFIG)
|
40 |
+
|
41 |
+
tokenizer = Tokenizer("tokenizer.model")
|
42 |
+
|
43 |
+
if "instruct" in MODEL_FILE:
|
44 |
+
tokenizer = ChatFormat(tokenizer)
|
45 |
+
|
46 |
+
model.load_state_dict(torch.load(MODEL_FILE, weights_only=True))
|
47 |
+
|
48 |
+
device = (
|
49 |
+
torch.device("cuda") if torch.cuda.is_available() else
|
50 |
+
torch.device("mps") if torch.backends.mps.is_available() else
|
51 |
+
torch.device("cpu")
|
52 |
+
)
|
53 |
+
model.to(device)
|
54 |
+
|
55 |
+
torch.manual_seed(123)
|
56 |
+
|
57 |
+
start = time.time()
|
58 |
+
|
59 |
+
token_ids = generate(
|
60 |
+
model=model,
|
61 |
+
idx=text_to_token_ids(PROMPT, tokenizer).to(device),
|
62 |
+
max_new_tokens=MAX_NEW_TOKENS,
|
63 |
+
context_size=LLAMA32_CONFIG["context_length"],
|
64 |
+
top_k=TOP_K,
|
65 |
+
temperature=TEMPERATURE
|
66 |
+
)
|
67 |
+
|
68 |
+
print(f"Time: {time.time() - start:.2f} sec")
|
69 |
+
|
70 |
+
if torch.cuda.is_available():
|
71 |
+
max_mem_bytes = torch.cuda.max_memory_allocated()
|
72 |
+
max_mem_gb = max_mem_bytes / (1024 ** 3)
|
73 |
+
print(f"Max memory allocated: {max_mem_gb:.2f} GB")
|
74 |
+
|
75 |
+
output_text = token_ids_to_text(token_ids, tokenizer)
|
76 |
+
|
77 |
+
if "instruct" in MODEL_FILE:
|
78 |
+
output_text = clean_text(output_text)
|
79 |
+
|
80 |
+
print("\n\nOutput text:\n\n", output_text)
|
tokenizer.py
CHANGED
@@ -10,7 +10,7 @@ import tiktoken
|
|
10 |
from tiktoken.load import load_tiktoken_bpe
|
11 |
|
12 |
|
13 |
-
class
|
14 |
def __init__(self, model_path):
|
15 |
assert os.path.isfile(model_path), f"Model file {model_path} not found"
|
16 |
mergeable_ranks = load_tiktoken_bpe(model_path)
|
|
|
10 |
from tiktoken.load import load_tiktoken_bpe
|
11 |
|
12 |
|
13 |
+
class Llama3Tokenizer:
|
14 |
def __init__(self, model_path):
|
15 |
assert os.path.isfile(model_path), f"Model file {model_path} not found"
|
16 |
mergeable_ranks = load_tiktoken_bpe(model_path)
|