# -------------------------------------------------------- # NVIDIA # Copyright (c) 2025 NVIDIA # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- # copy from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava_onevision/image_processing_llava_onevision_fast.py from typing import List, Optional, Union from transformers.image_processing_utils import BatchFeature, get_patch_output_size, select_best_resolution from transformers.image_processing_utils_fast import ( BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, BaseImageProcessorFast, DefaultFastImageProcessorKwargs, divide_to_patches, group_images_by_shape, reorder_images, ) from transformers.image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, IMAGENET_STANDARD_MEAN, # 0.5, 0.5, 0.5 IMAGENET_STANDARD_STD, # 0.5, 0.5, 0.5 ChannelDimension, ImageInput, VideoInput, PILImageResampling, SizeDict, get_image_size, make_flat_list_of_images, make_batched_videos, validate_kwargs ) from transformers.processing_utils import Unpack from transformers.utils import TensorType, add_start_docstrings, is_torch_available, is_torchvision_v2_available if is_torch_available(): import torch if is_torchvision_v2_available(): from transformers.image_utils import pil_torch_interpolation_mapping from torchvision.transforms.v2 import functional as F else: from torchvision.transforms import functional as F def crop(img: torch.Tensor, left: int, top: int, right: int, bottom: int) -> torch.Tensor: """Crop the given numpy array. Args: img (torch.Tensor): Image to be cropped. Format should be (C, H, W). left (int): The left coordinate of the crop box. top (int): The top coordinate of the crop box. right (int): The right coordinate of the crop box. bottom (int): The bottom coordinate of the crop box. Returns: torch.Tensor: Cropped image. """ if not isinstance(img, torch.Tensor): raise TypeError('img should be torch.Tensor. Got {}'.format(type(img))) if img.ndim not in [2, 3]: raise ValueError('Image should have 2 or 3 dimensions. Got {}'.format(img.ndim)) img_height = img.shape[1] img_width = img.shape[2] if top < 0 or left < 0 or bottom > img_height or right > img_width: raise ValueError('Crop coordinates out of bounds') if top >= bottom or left >= right: raise ValueError('Invalid crop coordinates') return img[:, top:bottom, left:right] class Eagle2_5_VLFastImageProcessorKwargs(DefaultFastImageProcessorKwargs): max_dynamic_tiles: Optional[int] min_dynamic_tiles: Optional[int] use_thumbnail: Optional[bool] pad_during_tiling: Optional[bool] do_pad: Optional[bool] @add_start_docstrings( "Constructs a fast ConvNeXT image processor. Based on [`SiglipImageProcessor`] with incorporation of processing each video frame.", BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, """ image_grid_pinpoints (`List[List[int]]`, *optional*): A list of possible resolutions to use for processing high resolution images. The best resolution is selected based on the original size of the image. Can be overridden by `image_grid_pinpoints` in the `preprocess` method. Not used for processing videos. do_pad (`bool`, *optional*): Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. """, ) class Eagle2_5_VLImageProcessorFast(BaseImageProcessorFast): resample = PILImageResampling.BICUBIC image_mean = IMAGENET_STANDARD_MEAN image_std = IMAGENET_STANDARD_STD size = {"height": 448, "width": 448} default_to_square = False crop_size = None do_resize = True do_center_crop = None do_rescale = True do_normalize = True do_convert_rgb = True do_pad = True max_dynamic_tiles = 12 min_dynamic_tiles = 1 use_thumbnail = True pad_during_tiling = False valid_kwargs = Eagle2_5_VLFastImageProcessorKwargs model_input_names = ["pixel_values_videos"] def __init__(self, **kwargs: Unpack[Eagle2_5_VLFastImageProcessorKwargs]): super().__init__(**kwargs) @add_start_docstrings( BASE_IMAGE_PROCESSOR_FAST_DOCSTRING_PREPROCESS, """ max_dynamic_tiles (`int`, *optional*): The maximum number of dynamic tiles to use for processing high resolution images. min_dynamic_tiles (`int`, *optional*): The minimum number of dynamic tiles to use for processing high resolution images. use_thumbnail (`bool`, *optional*): Whether to use a thumbnail for processing high resolution images. pad_during_tiling (`bool`, *optional*): Whether to pad the image during tiling. do_pad (`bool`, *optional*): Whether to pad the image. If `True`, will pad the patch dimension of the images in the batch to the largest number of patches in the batch. Padding will be applied to the bottom and right with zeros. """, ) def preprocess(self, images: ImageInput, **kwargs: Unpack[Eagle2_5_VLFastImageProcessorKwargs]) -> BatchFeature: return super().preprocess(images, **kwargs) def _prepare_images_structure( self, images: ImageInput, ) -> ImageInput: """ Prepare the images structure for processing. Args: images (`ImageInput`): The input images to process. Returns: `ImageInput`: The images with a valid nesting. """ return make_flat_list_of_images(images) def _prepare_videos_structure(self, videos: VideoInput) -> VideoInput: return self._prepare_images_structure(videos) def _prepare_input_videos( self, videos: VideoInput, do_convert_rgb: Optional[bool] = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, device: Optional["torch.device"] = None, ) -> list["torch.Tensor"]: """ Prepare the input images for processing. """ videos = self._prepare_videos_structure(videos) process_video_fn = partial( self._process_image, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device, ) # todo: yoni - check if we can parallelize this efficiently processed_videos = [] for video in videos: processed_videos.append(process_video_fn(video)) return processed_videos def _resize_for_patching( self, image: "torch.Tensor", target_resolution: tuple, interpolation: "F.InterpolationMode", input_data_format: ChannelDimension, ) -> "torch.Tensor": """ Resizes an image to a target resolution while maintaining aspect ratio. Args: image ("torch.Tensor"): The input image. target_resolution (tuple): The target resolution (height, width) of the image. interpolation (`InterpolationMode`): Resampling filter to use if resizing the image. input_data_format (`ChannelDimension` or `str`): The channel dimension format of the input image. Returns: "torch.Tensor": The resized and padded image. """ new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format) # Resize the image resized_image = F.resize(image, (new_height, new_width), interpolation=interpolation) return resized_image def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): """ previous version mainly foucs on ratio. We also consider area ratio here. """ best_factor = float('-inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area """ new area > 60% of original image area is enough. """ factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \ min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio) if factor_based_on_area_n_ratio > best_factor: best_factor = factor_based_on_area_n_ratio best_ratio = ratio return best_ratio def _pad_for_patching( self, image: "torch.Tensor", target_resolution: tuple, input_data_format: ChannelDimension ) -> "torch.Tensor": """ Pad an image to a target resolution while maintaining aspect ratio. """ target_height, target_width = target_resolution new_height, new_width = get_patch_output_size(image, target_resolution, input_data_format) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 padded_image = F.pad(image, padding=[paste_x, paste_y, paste_x, paste_y]) return padded_image def _get_image_patches( self, image: "torch.Tensor", min_num: int, max_num: int, size: tuple, tile_size: int, use_thumbnail: bool, interpolation: "F.InterpolationMode", pad_during_tiling: bool, ) -> List["torch.Tensor"] : image_size = get_image_size(image, channel_dim=ChannelDimension.FIRST) orig_height, orig_width = image_size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = self.find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, tile_size) # calculate the target width and height target_width = tile_size * target_aspect_ratio[0] target_height = tile_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] if pad_during_tiling: resized_image = self._resize_for_patching( image, (target_height, target_width), interpolation=interpolation, input_data_format=ChannelDimension.FIRST ) padded_image = self._pad_for_patching(resized_image, (target_height, target_width), input_data_format=ChannelDimension.FIRST) image_used_to_split = padded_image else: image_used_to_split = F.resize(image, (target_height, target_width), interpolation=interpolation) processed_tiles = [] for i in range(blocks): box = ( (i % (target_width // tile_size)) * tile_size, (i // (target_width // tile_size)) * tile_size, ((i % (target_width // tile_size)) + 1) * tile_size, ((i // (target_width // tile_size)) + 1) * tile_size ) # split the image split_img = crop(image_used_to_split, box[0], box[1], box[2], box[3]) processed_tiles.append(split_img) assert len(processed_tiles) == blocks if use_thumbnail and len(processed_tiles) != 1: thumbnail_img = F.resize(image, (tile_size, tile_size), interpolation=interpolation) processed_tiles.append(thumbnail_img) return processed_tiles def _pad_for_batching( self, pixel_values: List["torch.Tensor"], ) -> List["torch.Tensor"]: """ Pads images on the `num_of_patches` dimension with zeros to form a batch of same number of patches. Args: pixel_values (`List[torch.Tensor]`): An array of pixel values of each images of shape (`batch_size`, `num_patches`, `image_in_3D`) Returns: List[`torch.Tensor`]: The padded images. """ max_patch = max(len(x) for x in pixel_values) pixel_values = [ torch.nn.functional.pad(image, pad=[0, 0, 0, 0, 0, 0, 0, max_patch - image.shape[0]]) for image in pixel_values ] return pixel_values def _preprocess( self, images: List["torch.Tensor"], do_resize: bool, size: SizeDict, max_dynamic_tiles: int, min_dynamic_tiles: int, use_thumbnail: bool, pad_during_tiling: bool, interpolation: Optional["F.InterpolationMode"], do_center_crop: bool, crop_size: SizeDict, do_rescale: bool, rescale_factor: float, do_normalize: bool, image_mean: Optional[Union[float, List[float]]], image_std: Optional[Union[float, List[float]]], do_pad: bool, return_tensors: Optional[Union[str, TensorType]], ) -> BatchFeature: processed_images = [] image_sizes = [] # Determine the size tuple if size and size.height and size.width: size_tuple = (size.height, size.width) else: size_tuple = (size.shortest_edge, size.shortest_edge) # Determine the patch size if crop_size and crop_size.height: tile_size = crop_size.height elif size and size.height: tile_size = size.height else: tile_size = size.shortest_edge for image in images: image_patches = self._get_image_patches( image, min_num=min_dynamic_tiles, max_num=max_dynamic_tiles, size=size_tuple, tile_size=tile_size, use_thumbnail=use_thumbnail, interpolation=interpolation, pad_during_tiling=pad_during_tiling, ) # Group images by size for batched processing processed_image_patches_grouped = {} grouped_image_patches, grouped_image_patches_index = group_images_by_shape(image_patches) for shape, stacked_image_patches in grouped_image_patches.items(): if do_resize: stacked_image_patches = self.resize( image=stacked_image_patches, size=size, interpolation=interpolation, ) if do_center_crop: stacked_image_patches = self.center_crop(stacked_image_patches, crop_size) # Fused rescale and normalize stacked_image_patches = self.rescale_and_normalize( stacked_image_patches, do_rescale, rescale_factor, do_normalize, image_mean, image_std ) processed_image_patches_grouped[shape] = stacked_image_patches processed_image_patches = reorder_images(processed_image_patches_grouped, grouped_image_patches_index) processed_image_patches = ( torch.stack(processed_image_patches, dim=0) if return_tensors else processed_image_patches ) processed_images.append(processed_image_patches) image_sizes.append(get_image_size(image, ChannelDimension.FIRST)) if do_pad: processed_images = self._pad_for_batching(processed_images) # processed_images = torch.stack(processed_images, dim=0) if return_tensors else processed_images processed_images = torch.cat(processed_images, dim=0) if return_tensors else processed_images return BatchFeature( data={"pixel_values": processed_images, "image_sizes": image_sizes}, tensor_type=return_tensors ) def preprocess(self, images: ImageInput, videos: VideoInput=None, **kwargs: Unpack[Eagle2_5_VLFastImageProcessorKwargs]) -> BatchFeature: validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self.valid_kwargs.__annotations__.keys()) # Set default kwargs from self. This ensures that if a kwarg is not provided # by the user, it gets its default value from the instance, or is set to None. for kwarg_name in self.valid_kwargs.__annotations__: kwargs.setdefault(kwarg_name, getattr(self, kwarg_name, None)) # Extract parameters that are only used for preparing the input images do_convert_rgb = kwargs.pop("do_convert_rgb") input_data_format = kwargs.pop("input_data_format") device = kwargs.pop("device") # Prepare input images if images is not None: images = self._prepare_input_images( images=images, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device ) if videos is not None: videos = self._prepare_input_images( images=videos, do_convert_rgb=do_convert_rgb, input_data_format=input_data_format, device=device ) # Update kwargs that need further processing before being validated kwargs = self._further_process_kwargs(**kwargs) # Validate kwargs self._validate_preprocess_kwargs(**kwargs) # torch resize uses interpolation instead of resample resample = kwargs.pop("resample") kwargs["interpolation"] = ( pil_torch_interpolation_mapping[resample] if isinstance(resample, (PILImageResampling, int)) else resample ) # Pop kwargs that are not needed in _preprocess kwargs.pop("default_to_square") kwargs.pop("data_format") if images is not None: return self._preprocess(images, **kwargs) elif videos is not None: return self._preprocess(videos, **kwargs) __all__ = ["Eagle2_5_VLImageProcessorFast"]