# -------------------------------------------------------- # NVIDIA # Copyright (c) 2025 NVIDIA # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import copy from transformers.models.llama.configuration_llama import LlamaConfig from transformers.models.qwen2.configuration_qwen2 import Qwen2Config from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging from transformers.models.siglip.configuration_siglip import SiglipVisionConfig logger = logging.get_logger(__name__) class Eagle2_5_VLConfig(PretrainedConfig): model_type = 'eagle_2_5_vl' is_composition = True sub_configs = {"vision_config": SiglipVisionConfig, "text_config": Qwen2Config} def __init__( self, vision_config=None, text_config=None, use_backbone_lora=0, use_llm_lora=0, pad2square=False, select_layer=-4, force_image_size=None, downsample_ratio=0.5, template=None, dynamic_image_size=False, use_thumbnail=False, loss_version='v1', min_dynamic_tiles=1, max_dynamic_tiles=6, mlp_checkpoint=False, initializer_range=0.02, _attn_implementation='flash_attention_2', _attn_implementation_autoset=False, llm_config=None, image_token_index=None, **kwargs): super().__init__(**kwargs) if vision_config is None: vision_config = {'model_type': 'siglip_vision_model'} logger.info('vision_config is None. Initializing the InternVisionConfig with default values.') if text_config is None: text_config = {'architectures': ['Qwen2ForCausalLM']} logger.info('text_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).') if vision_config['model_type'] == 'siglip_vision_model': self.vision_config = SiglipVisionConfig(**vision_config) else: raise ValueError('Unsupported model_type: {}'.format(vision_config['model_type'])) if text_config['architectures'][0] == 'LlamaForCausalLM': self.text_config = LlamaConfig(**text_config) elif text_config['architectures'][0] == 'Qwen2ForCausalLM': self.text_config = Qwen2Config(**text_config) else: raise ValueError('Unsupported architecture: {}'.format(text_config['architectures'][0])) self.use_backbone_lora = use_backbone_lora self.use_llm_lora = use_llm_lora self.mlp_checkpoint = mlp_checkpoint self.pad2square = pad2square self.select_layer = select_layer self.force_image_size = force_image_size self.downsample_ratio = downsample_ratio self.template = template self.dynamic_image_size = dynamic_image_size self.use_thumbnail = use_thumbnail self.loss_version = loss_version self.initializer_range = initializer_range self.min_dynamic_tiles = min_dynamic_tiles self.max_dynamic_tiles = max_dynamic_tiles self.tie_word_embeddings = self.text_config.tie_word_embeddings self._attn_implementation = _attn_implementation self._attn_implementation_autoset = _attn_implementation_autoset self.image_token_index = image_token_index logger.info(f'min_dynamic_tiles: {self.min_dynamic_tiles}') logger.info(f'max_dynamic_tiles: {self.max_dynamic_tiles}') def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output['vision_config'] = self.vision_config.to_dict() output['text_config'] = self.text_config.to_dict() output['model_type'] = self.__class__.model_type output['use_backbone_lora'] = self.use_backbone_lora output['use_llm_lora'] = self.use_llm_lora output['pad2square'] = self.pad2square output['select_layer'] = self.select_layer output['force_image_size'] = self.force_image_size output['downsample_ratio'] = self.downsample_ratio output['template'] = self.template output['dynamic_image_size'] = self.dynamic_image_size output['use_thumbnail'] = self.use_thumbnail output['min_dynamic_tiles'] = self.min_dynamic_tiles output['max_dynamic_tiles'] = self.max_dynamic_tiles output['tie_word_embeddings'] = self.tie_word_embeddings output['_attn_implementation'] = self._attn_implementation output['_attn_implementation_autoset'] = self._attn_implementation_autoset return output