|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from argparse import Namespace |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from .adaptor_base import AdaptorBase, AdaptorInput, RadioOutput |
|
from .adaptor_mlp import create_mlp_from_state, create_mlp_from_config |
|
|
|
|
|
class GenericAdaptor(AdaptorBase): |
|
def __init__(self, main_config: Namespace, adaptor_config, state, mlp_config=None): |
|
super().__init__() |
|
|
|
extra_args = dict() |
|
ups = None |
|
ups_rank = None |
|
if adaptor_config is not None: |
|
ups = adaptor_config.get('fd_upsample_factor', None) |
|
ups_rank = adaptor_config.get('fd_upsample_rank', None) |
|
elif mlp_config is not None: |
|
ups = mlp_config["feature"].get('upsample_factor', None) |
|
ups_rank = mlp_config["feature"].get('upsample_rank', None) |
|
if ups is not None: |
|
extra_args['upsample_factor'] = ups |
|
extra_args['upsample_rank'] = ups_rank |
|
|
|
if state is not None: |
|
spectral_heads = getattr(main_config, 'spectral_heads', False) |
|
self.head_mlp = create_mlp_from_state(main_config.mlp_version, state, 'summary.', spectral_weights=spectral_heads) |
|
self.feat_mlp = create_mlp_from_state(main_config.mlp_version, state, 'feature.', spectral_weights=spectral_heads, **extra_args) |
|
else: |
|
assert mlp_config is not None, "Config must not be None if state is None" |
|
|
|
self.head_mlp = create_mlp_from_config( |
|
main_config.mlp_version, |
|
mlp_config["summary"]["input_dim"], |
|
mlp_config["summary"]["hidden_dim"], |
|
mlp_config["summary"]["output_dim"], |
|
mlp_config["summary"]["num_inner"], |
|
) |
|
self.feat_mlp = create_mlp_from_config( |
|
main_config.mlp_version, |
|
mlp_config["feature"]["input_dim"], |
|
mlp_config["feature"]["hidden_dim"], |
|
mlp_config["feature"]["output_dim"], |
|
mlp_config["feature"]["num_inner"], |
|
**extra_args |
|
) |
|
|
|
def forward(self, input: AdaptorInput) -> RadioOutput: |
|
|
|
first_param = next(self.parameters()) |
|
summary = self.head_mlp(input.summary.to(dtype=first_param.dtype)).to(dtype=input.summary.dtype) |
|
feat = self.feat_mlp(input.features.to(dtype=first_param.dtype), images=input.images, patch_size=input.patch_size).to(dtype=input.features.dtype) |
|
|
|
if input.feature_fmt == 'NCHW': |
|
feat = (feat.reshape(feat.shape[0], input.images.shape[-2] // input.patch_size * self.feat_mlp.upsample_factor, input.images.shape[-1] // input.patch_size * self.feat_mlp.upsample_factor, feat.shape[2]) |
|
.permute(0, 3, 1, 2) |
|
) |
|
|
|
return RadioOutput(summary, feat) |
|
|