File size: 71,822 Bytes
42c6bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41a5265
42c6bee
41a5265
42c6bee
41a5265
42c6bee
 
 
41a5265
42c6bee
 
41a5265
 
 
 
42c6bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
import base64
import copy
import io
import math
import os
import uuid
from typing import Dict, List, Optional, Union
from urllib.parse import urlparse

import av
import cv2
import numpy as np
import requests
import torch
from decord import VideoReader, cpu
from PIL import Image, UnidentifiedImageError
from transformers.image_processing_utils import (
    BaseImageProcessor,
    BatchFeature,
    get_size_dict,
)
from transformers.image_transforms import (
    convert_to_rgb,
    get_resize_output_image_size,
    resize,
    to_channel_dimension_format,
)
from transformers.image_utils import (
    OPENAI_CLIP_MEAN,
    OPENAI_CLIP_STD,
    ChannelDimension,
    ImageInput,
    PILImageResampling,
    get_image_size,
    infer_channel_dimension_format,
    is_scaled_image,
    make_list_of_images,
    to_numpy_array,
    valid_images,
)
from transformers.utils import TensorType, logging

logger = logging.get_logger(__name__)


def determine_possible_resolutions(anyres: bool, max_num_grids: int, grid_size: int, use_1x1_grid: bool = False):
    """
    Finds and returns possible resolution combinations with a total number of grids less than or equal to max_num_grids.

    For example, if max_num_grids is 4, the possible grid combinations are:
    [1x1, 1x2, 1x3, 1x4, 2x1, 2x2, 3x1, 4x1], and the resolutions are calculated accordingly.

    Example:
        >>> possible_resolutions = determine_possible_resolutions(anyres=True, max_num_grids=4, grid_size=336)
        >>> print(possible_resolutions)
        [[336, 336], [336, 672], [336, 1008], [336, 1344], [672, 336], [672, 672], [1008, 336], [1344, 336]]

    Args:
        anyres (bool): Whether to allow any resolution combinations up to the maximum grid count.
        max_num_grids (int): The maximum number of grids allowed (height x width must be ≤ this value).
        grid_size (int): The size of each grid in pixels (e.g., 336).
        use_1x1_grid (bool, optional): Whether to include the 1x1 grid as a valid resolution. Defaults to False.

    Returns:
        List[List[int]]: A list of possible [height, width] resolution pairs.
    """
    possible_resolutions = []
    if anyres:
        assert max_num_grids > 0
        for i in range(1, max_num_grids + 1):
            for j in range(1, max_num_grids + 1):
                if i == 1 and j == 1 and not use_1x1_grid:
                    continue
                if i * j <= max_num_grids:
                    possible_resolutions.append([i, j])

        possible_resolutions = [[ys * grid_size, xs * grid_size] for ys, xs in possible_resolutions]

    return possible_resolutions


def divide_to_grids(image: np.array, grid_size: int, input_data_format=None) -> List[np.array]:
    """
    Divides a local image into grids of size (grid_size x grid_size).

    Args:
        image (np.array): Input image as a NumPy array.
        grid_size (int): The size (in pixels) of each square grid.
        input_data_format (optional): Optional format specifier (e.g., "channels_first" or "channels_last").

    Returns:
        List[np.array]: A list of image patches, each of size (grid_size x grid_size).
    """
    grids = []
    height, width = get_image_size(image, channel_dim=input_data_format)
    for i in range(0, height, grid_size):
        for j in range(0, width, grid_size):
            if input_data_format == ChannelDimension.LAST:
                grid = image[i : i + grid_size, j : j + grid_size]
            else:
                grid = image[:, i : i + grid_size, j : j + grid_size]
            grids.append(grid)

    return grids


def pad(
    image: np.array,
    target_size: tuple,
    background_color=(127, 127, 127),
    input_data_format=None,
) -> np.array:
    """
    Pads the input image on the sides (top/bottom and left/right) to match the target height and width.

    Args:
        image (np.array): Input image as a NumPy array.
        target_size (tuple): Target size as (target_height, target_width).
        background_color (tuple, optional): RGB color value used for padding. Defaults to (127, 127, 127).
        input_data_format (optional): Optional format specifier (e.g., "channels_first" or "channels_last").

    Returns:
        np.array: The padded image with the specified target size.
    """
    target_height, target_width = target_size
    height, width = get_image_size(image, channel_dim=input_data_format)

    # result = np.ones((target_height, target_width, image.shape[2]), dtype=image.dtype) * background_color
    result = np.empty((target_height, target_width, image.shape[2]), dtype=image.dtype)
    for i in range(image.shape[2]):
        result[..., i].fill(background_color[i])

    paste_x = (target_width - width) // 2
    paste_y = (target_height - height) // 2

    result[paste_y : paste_y + height, paste_x : paste_x + width, :] = image

    return result


def expand2square(
    image: np.array,
    bboxes_dict=None,
    background_color=(127, 127, 127),
    input_data_format=None,
) -> np.array:
    """
    Expands the input image to a square shape by placing it at the center of a new square canvas,
    with padding added to the shorter side (either top/bottom or left/right).

    The image is always centered on the new canvas, and padding is applied symmetrically.

    Args:
        image (np.array): Input image as a NumPy array.
        bboxes_dict (dict, optional): A dictionary of bounding boxes, where each value is an NDArray of shape (N, 4, 2)
            with box coordinates in the format [[xtl, ytl], [xtr, ytr], [xbr, ybr], [xbl, ybl]].
            Supports multiple categories (e.g., "ocr", "html") simultaneously.
        background_color (tuple, optional): RGB color to fill the padding area. Defaults to (127, 127, 127).
        input_data_format (optional): Optional format specifier for image data (e.g., "channels_first" or "channels_last").

    Returns:
        np.array: A square-shaped image with the original image centered and padded as needed.

    Example:
        >>> _img = np.ones((80, 100), dtype=np.uint8) * 100
        >>> _bboxes_dict = {"words": np.array([[[10, 10], [20, 10], [20, 20], [10, 20]],
        ...                                    [[30, 30], [40, 30], [40, 40], [30, 40]]])}
        >>> _img, _bboxes_dict = expand2square(_img, _bboxes_dict, (255, 255, 255))
        >>> _img.shape
        (100, 100)
        >>> guessed_ocr_bboxes = np.array([[[20, 10], [30, 10], [30, 20], [20, 20]],
        ...                                [[40, 30], [50, 30], [50, 40], [40, 40]]])
        >>> np.testing.assert_array_almost_equal(_bboxes_dict["words"], guessed_ocr_bboxes) is None
        True
    """
    height, width = get_image_size(image, channel_dim=input_data_format)
    if width == height:
        return image, bboxes_dict
    elif width > height:
        # result = np.ones((width, width, image.shape[2]), dtype=image.dtype) * background_color
        result = np.empty((width, width, image.shape[2]), dtype=image.dtype)
        for i in range(image.shape[2]):
            result[..., i].fill(background_color[i])

        result[(width - height) // 2 : (width - height) // 2 + height, :] = image
        if bboxes_dict is not None:
            for key in bboxes_dict:
                bboxes_dict[key][:, :, 1] += (width - height) // 2
        return result, bboxes_dict
    else:
        # result = np.ones((height, height, image.shape[2]), dtype=image.dtype) * background_color
        result = np.empty((height, height, image.shape[2]), dtype=image.dtype)
        for i in range(image.shape[2]):
            result[..., i].fill(background_color[i])

        result[:, (height - width) // 2 : (height - width) // 2 + width] = image
        if bboxes_dict is not None:
            for key in bboxes_dict:
                bboxes_dict[key][:, :, 0] += (height - width) // 2
        return result, bboxes_dict


def resize_longside(
    image: np.array,
    size: int,
    resample: PILImageResampling = PILImageResampling.BICUBIC,
    data_format: Optional[Union[str, ChannelDimension]] = None,
    input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
    """
    Resizes the image so that its longer side matches the specified size, maintaining the original aspect ratio.

    Args:
        image (np.array): Input image as a NumPy array.
        size (int): Target size for the longer side of the image.
        resample (PILImageResampling, optional): Resampling method to use during resizing. Defaults to BICUBIC.
        data_format (str or ChannelDimension, optional): Output data format (e.g., "channels_first" or "channels_last").
        input_data_format (str or ChannelDimension, optional): Input data format of the image.

    Returns:
        np.array: The resized image with its aspect ratio preserved.
    """
    height, width = get_image_size(image, channel_dim=input_data_format)

    if width == height:
        target_height, target_width = size, size
    elif width > height:
        target_width = size
        target_height = math.ceil(height / width * size)
    else:
        target_width = math.ceil(width / height * size)
        target_height = size

    return resize(
        image,
        size=(target_height, target_width),
        resample=resample,
        data_format=data_format,
        input_data_format=input_data_format,
    )


def select_best_resolution(original_size: tuple, possible_resolutions: list) -> tuple:
    """   
    Selects the best-fit resolution from a list of possible resolutions based on the original image size.
    This function evaluates each resolution by computing its effective and wasted area compared to the original size.
    The optimal resolution is the one that maximizes the effective area while minimizing unused (wasted) space.
    
    Args:
        original_size (tuple): The original image size in the format (height, width).
        possible_resolutions (list): A list of candidate resolutions in the format [(height1, width1), (height2, width2), ...].
        
    Returns:
        tuple: The best-fit resolution in the format (height, width).

    This function includes code adapted from the file image_processing_llava_next.py in the LLaVA-Next 
    project(https://github.com/huggingface/transformers/blob/v4.40.2/src/transformers/models/llava_next/image_processing_llava_next.py),
    which is licensed under apache-2.0.
    """
    original_height, original_width = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for height, width in possible_resolutions:
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (
            effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution
        ):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (height, width)

    return best_fit


def _get_local_grids_output_size(image: np.array, target_resolution: tuple, input_data_format=None):
    """
    Computes the number of local grids (patches) along the height and width when resizing an image
    to the target resolution.

    Args:
        image (np.array): Input image as a NumPy array.
        target_resolution (tuple): Target resolution in the format (target_height, target_width).
        input_data_format (optional): Optional format specifier (e.g., "channels_first" or "channels_last").

    Returns:
        tuple: A tuple (grid_h, grid_w) representing the number of grids along the height and width.
    """
    original_height, original_width = get_image_size(image, channel_dim=input_data_format)
    target_height, target_width = target_resolution

    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    return new_height, new_width


def determine_anyres_num_vision_patches(
    num_grids,
    image_size,
    grid_size,
    patch_size,
    possible_resolutions,
    anyres=False,
    unpad=True,
    num_queries_vis_abstractor=0,
    num_queries_vis_abstractor_slow=0,
    is_video=False,
    first_last_frames_slow=False,  # sample-wise option
    is_first_or_last_frames=False,  # grid-wise option
):
    """
    Computes the number of visual tokens (patches) based on image resolution, grid configuration, and patch size.

    This function supports both fixed-size and any-resolution settings, as well as video-specific configurations
    such as handling slow frames and frame position flags.

    Args:
        num_grids (int): Number of grids per image (e.g., 1 for 1x1, 4 for 2x2, etc.).
        image_size (tuple): The original image size as (height, width).
        grid_size (int): Size of each grid in pixels (e.g., 336).
        patch_size (int): Size of each vision patch (e.g., 14 for ViT models).
        possible_resolutions (list): List of possible resolution tuples [(h1, w1), (h2, w2), ...].
        anyres (bool, optional): Whether to use any-resolution mode. Defaults to False.
        unpad (bool, optional): Whether to unpad the image before computing patches. Defaults to True.
        num_queries_vis_abstractor (int, optional): Number of query tokens for vision abstractor (fast path).
        num_queries_vis_abstractor_slow (int, optional): Number of query tokens for vision abstractor (slow path).
        is_video (bool, optional): Whether the input is a video. Defaults to False.
        first_last_frames_slow (bool, optional): Whether to treat first/last video frames as "slow". Defaults to False.
        is_first_or_last_frames (bool, optional): Whether current grid corresponds to first/last frame. Defaults to False.

    Returns:
        int: Total number of visual tokens (patches) after processing.
    """
    if not anyres:
        return num_queries_vis_abstractor if num_queries_vis_abstractor > 0 else (grid_size // patch_size) ** 2

    if num_queries_vis_abstractor > 0:
        num_patch_per_grid = int(num_queries_vis_abstractor**0.5)
    else:
        num_patch_per_grid = grid_size // patch_size

    num_global_per_grid = num_patch_per_grid

    # In anyres mode, a global image is included, so there are always at least 2 grids.
    # However, for video inputs, there is no global image, so it's possible to have only 1 grid.
    # Therefore, the assertion below is commented out:
    # assert num_grids > 1

    # Compute the number of vision patches.
    height, width = select_best_resolution(image_size, possible_resolutions)

    num_patch_height = (height // grid_size) * num_patch_per_grid
    num_patch_width = (width // grid_size) * num_patch_per_grid

    # local images
    if unpad:
        original_height, original_width = image_size

        original_aspect_ratio = original_width / original_height
        current_aspect_ratio = num_patch_width / num_patch_height

        if original_aspect_ratio > current_aspect_ratio:
            scale_factor = num_patch_width / original_width
            new_height = int(original_height * scale_factor)
            padding = (num_patch_height - new_height) // 2
            num_patch_height = num_patch_height - padding * 2
        else:
            scale_factor = num_patch_height / original_height
            new_width = int(original_width * scale_factor)
            padding = (num_patch_width - new_width) // 2
            num_patch_width = num_patch_width - padding * 2

        num_patches = num_patch_width * num_patch_height + num_patch_height
    else:
        num_patches = num_patch_width * num_patch_height

    # In the "slow" strategy, when applying to first and last frames only, it is applied exclusively to those two frames.
    if num_queries_vis_abstractor_slow > 0:
        if first_last_frames_slow:
            if is_first_or_last_frames:
                num_patches += num_queries_vis_abstractor_slow - num_queries_vis_abstractor
        else:
            num_patches += num_queries_vis_abstractor_slow - num_queries_vis_abstractor
        # The slowfast feature is only applicable when unpad is set to False.
        assert unpad is False

    # Global image is not included for video inputs.
    if not is_video:
        num_patches += num_global_per_grid**2

    return num_patches


class HCXVisionProcessor(BaseImageProcessor):
    r"""
    Constructs a VLM image processor.

    This processor is based on [`CLIPImageProcessor`] and incorporates additional techniques
    for handling high-resolution images, such as flexible resolution support (`anyres`), unpadding,
    square padding, and multi-grid patching strategies.

    Args:
        do_resize (bool): Whether to resize the image.
        size (Dict[str, int], optional): Target size for resizing, typically with keys `"height"` and `"width"`.
        anyres (bool): Whether to enable the any-resolution (`anyres`) feature, which allows flexible resolution handling via grid division.
        unpad (bool): When `anyres` is enabled, whether to remove visual tokens corresponding to pure padding regions.
        max_num_grids (int): Maximum number of grids allowed per image.
        max_image_cnt (int): Maximum number of images that can be processed at once (used for batching).
        num_queries_vis_abstractor (int): Number of visual query tokens per grid when using a visual resampler (e.g., Perceiver).
        num_queries_vis_abstractor_video_fast (int): Number of visual queries for fast-path video frames.
        num_queries_vis_abstractor_video_slow (int): Number of visual queries for slow-path video frames (e.g., first/last).
        possible_resolutions (List): List of allowed resolution pairs when `anyres` is enabled. Example: [[336, 336], [336, 672], [672, 336]].
        patch_size (int): Patch size for the Vision Transformer (ViT).
        pad_to_square (bool): Whether to pad images to a square shape. If `False`, a center crop is applied to fit ViT input.
        resample (PILImageResampling): Resampling method to use for resizing. Default is `BICUBIC`.
        do_center_crop (bool): Whether to apply center cropping.
        crop_size (Dict[str, int], optional): Size for center cropping.
        do_rescale (bool): Whether to rescale pixel values.
        rescale_factor (float or int): Factor to use for rescaling pixel values (typically `1/255`).
        do_normalize (bool): Whether to normalize pixel values using `image_mean` and `image_std`.
        image_mean (float or List[float], optional): Mean values for normalization. Can be a single float or list of floats per channel.
        image_std (float or List[float], optional): Standard deviation values for normalization. Can be a single float or list of floats per channel.
        do_convert_rgb (bool): Whether to convert the input image to RGB.
        first_last_frames_slow (bool): Whether to treat the first and last frames of a video as “slow path” (processed differently).

    Attributes:
        model_input_names (List[str]): Names of the expected model inputs. Defaults to `["pixel_values"]`.
    """

    model_input_names = ["pixel_values"]

    def __init__(
        self,
        do_resize: bool = True,
        size: Dict[str, int] = None,
        anyres: bool = False,
        unpad: bool = False,
        max_num_grids: int = 9,
        max_image_cnt: int = 12,
        num_queries_vis_abstractor: int = 0,
        num_queries_vis_abstractor_video_fast: int = 0,
        num_queries_vis_abstractor_video_slow: int = 0,
        possible_resolutions: List = [],
        patch_size: int = 14,
        pad_to_square: bool = True,
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        do_center_crop: bool = True,
        crop_size: Dict[str, int] = None,
        do_rescale: bool = True,
        rescale_factor: Union[int, float] = 1 / 255,
        do_normalize: bool = True,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = True,
        first_last_frames_slow: bool = False,
        **kwargs,
    ) -> None:
        super().__init__(**kwargs)
        size = size if size is not None else {"shortest_edge": 512}
        size = get_size_dict(size, default_to_square=False)
        crop_size = crop_size if crop_size is not None else {"height": 512, "width": 512}
        crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")

        self.do_resize = do_resize
        self.size = size
        self.anyres = anyres
        self.unpad = unpad
        self.max_num_grids = max_num_grids
        self.max_image_cnt = max_image_cnt
        self.num_queries_vis_abstractor = num_queries_vis_abstractor
        self.num_queries_vis_abstractor_video_fast = num_queries_vis_abstractor_video_fast
        self.num_queries_vis_abstractor_video_slow = num_queries_vis_abstractor_video_slow
        self.possible_resolutions = [_resolution for _resolution in possible_resolutions]
        self.patch_size = patch_size
        self.pad_to_square = pad_to_square
        self.resample = resample
        self.do_center_crop = do_center_crop
        self.crop_size = crop_size
        self.do_rescale = do_rescale
        self.rescale_factor = rescale_factor
        self.do_normalize = do_normalize
        self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
        self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
        self.do_convert_rgb = do_convert_rgb
        self.first_last_frames_slow = first_last_frames_slow

        assert self.crop_size["height"] == self.crop_size["width"]

    def resize(
        self,
        image: np.ndarray,
        size: Dict[str, int],
        resample: PILImageResampling = PILImageResampling.BICUBIC,
        data_format: Optional[Union[str, ChannelDimension]] = None,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        **kwargs,
    ) -> np.ndarray:
        """
        Resizes the input image to the specified target size.

        Args:
            image (np.ndarray): The input image to resize.
            size (Dict[str, int]): A dictionary specifying the target size with keys `"height"` and `"width"`.
            resample (PILImageResampling, optional): The resampling filter to use. Defaults to `BICUBIC`.
            data_format (str or ChannelDimension, optional): The desired output data format (e.g., "channels_last").
            input_data_format (str or ChannelDimension, optional): The input data format of the image.
            **kwargs: Additional keyword arguments, if any.

        Returns:
            np.ndarray: The resized image as a NumPy array.
        """
        default_to_square = True
        if "shortest_edge" in size:
            size = size["shortest_edge"]
            default_to_square = False
        elif "height" in size and "width" in size:
            size = (size["height"], size["width"])
        else:
            raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")

        output_size = get_resize_output_image_size(
            image,
            size=size,
            default_to_square=default_to_square,
            input_data_format=input_data_format,
        )

        return resize(
            image,
            size=output_size,
            resample=resample,
            data_format=data_format,
            input_data_format=input_data_format,
            **kwargs,
        )

    def _preprocess(
        self,
        images: ImageInput,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        resample: PILImageResampling = None,
        do_center_crop: bool = None,
        crop_size: int = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
    ) -> Image.Image:
        """
        Applies a sequence of preprocessing operations to the input image(s), including resizing, cropping, rescaling,
        normalization, and format conversion.

        This method is typically used internally to prepare images for model input.

        Args:
            images (ImageInput): A single image or a batch of images to preprocess.
            do_resize (bool, optional): Whether to resize the image(s).
            size (Dict[str, int], optional): Target size for resizing, with keys `"height"` and `"width"`.
            resample (PILImageResampling, optional): Resampling method to use for resizing.
            do_center_crop (bool, optional): Whether to apply center cropping.
            crop_size (int, optional): Size of the center crop (applied to both height and width).
            do_rescale (bool, optional): Whether to rescale the image pixel values.
            rescale_factor (float, optional): Factor to use when rescaling pixel values (e.g., 1/255).
            do_normalize (bool, optional): Whether to normalize the image using `image_mean` and `image_std`.
            image_mean (float or List[float], optional): Mean value(s) used for normalization.
            image_std (float or List[float], optional): Standard deviation value(s) used for normalization.
            data_format (ChannelDimension, optional): The desired output data format (e.g., `ChannelDimension.FIRST`).
            input_data_format (str or ChannelDimension, optional): The format of the input image(s).

        Returns:
            Image.Image: The preprocessed image or batch of images, ready for model input.
        """
        images = make_list_of_images(images)

        if do_resize:
            images = [
                self.resize(
                    image=image,
                    size=size,
                    resample=resample,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        if do_center_crop:
            images = [
                self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
            ]

        if do_rescale:
            images = [
                self.rescale(
                    image=image,
                    scale=rescale_factor,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        if do_normalize:
            images = [
                self.normalize(
                    image=image,
                    mean=image_mean,
                    std=image_std,
                    input_data_format=input_data_format,
                )
                for image in images
            ]

        images = [
            to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
        ]

        return images

    def _resize_for_local_grids(
        self,
        image: np.array,
        target_resolution: tuple,
        resample,
        input_data_format: ChannelDimension,
    ) -> np.array:
        """
        Resizes the image to the given target resolution for use in local grid processing.

        This function ensures that the image is properly resized to match the (height, width) specified
        in `target_resolution`, using the provided resampling method. It supports channel-first and
        channel-last formats based on `input_data_format`.

        Args:
            image (np.array): Input image as a NumPy array.
            target_resolution (tuple): Target resolution as (height, width) for resizing.
            resample: Resampling method to use (e.g., `PILImageResampling.BICUBIC`).
            input_data_format (ChannelDimension): Format of the input image (e.g., `ChannelDimension.FIRST` or `LAST`).

        Returns:
            np.array: The resized image in NumPy array format.
        """
        new_height, new_width = _get_local_grids_output_size(image, target_resolution, input_data_format)

        # Resize the image
        resized_image = resize(
            image,
            (new_height, new_width),
            resample=resample,
            input_data_format=input_data_format,
        )

        return resized_image

    def _pad_for_patching(
        self,
        image: np.array,
        target_resolution: tuple,
        input_data_format: ChannelDimension,
    ) -> np.array:
        """
        Pads the image to match the target resolution, ensuring compatibility with patch-based models.

        This is typically used to make sure the image dimensions are divisible by the patch size or to
        meet specific model input requirements. Padding is applied symmetrically where needed.

        Args:
            image (np.array): Input image as a NumPy array.
            target_resolution (tuple): The desired resolution after padding, in the format (height, width).
            input_data_format (ChannelDimension): Format of the input image (e.g., `ChannelDimension.FIRST` or `LAST`).

        Returns:
            np.array: The padded image as a NumPy array.
        """
        target_height, target_width = target_resolution

        background_color = tuple(int(x * 255) for x in self.image_mean)
        padded_image = pad(
            image,
            target_size=(target_height, target_width),
            background_color=background_color,
            input_data_format=input_data_format,
        )

        return padded_image

    def get_image_grids(
        self,
        image: np.array,
        possible_resolutions,
        grid_size: int,
        resample: PILImageResampling,
        data_format: ChannelDimension,
        input_data_format: ChannelDimension,
    ) -> List[np.array]:
        """
        Splits the input image into multiple local grids based on possible resolutions and grid size.

        The function selects the best resolution from the provided list, resizes the image accordingly,
        and divides it into non-overlapping grid patches of size (grid_size x grid_size). It is commonly
        used for any-resolution (anyres) visual processing.

        Args:
            image (np.array): Input image as a NumPy array.
            possible_resolutions (List[Tuple[int, int]]): List of allowed resolutions to choose from.
            grid_size (int): The size of each grid patch (e.g., 336 pixels).
            resample (PILImageResampling): Resampling method used during resizing.
            data_format (ChannelDimension): Output data format (e.g., `ChannelDimension.FIRST`).
            input_data_format (ChannelDimension): Input data format of the image.

        Returns:
            List[np.array]: A list of grid image patches as NumPy arrays.
        """
        if not isinstance(possible_resolutions, list):
            raise ValueError("possible_resolutions must be a list of possible resolutions.")

        image_size = get_image_size(image, channel_dim=input_data_format)
        best_resolution = select_best_resolution(image_size, possible_resolutions)
        resized_image = self._resize_for_local_grids(
            image,
            best_resolution,
            resample=resample,
            input_data_format=input_data_format,
        )
        padded_image = self._pad_for_patching(resized_image, best_resolution, input_data_format=input_data_format)
        local_grids = divide_to_grids(padded_image, grid_size=grid_size, input_data_format=input_data_format)

        # make sure that all patches are in the input data format
        local_grids = [
            to_channel_dimension_format(grid, channel_dim=data_format, input_channel_dim=input_data_format)
            for grid in local_grids
        ]

        return local_grids

    def preprocess(
        self,
        images: ImageInput,
        do_resize: bool = None,
        size: Dict[str, int] = None,
        anyres: bool = None,
        unpad: bool = None,
        is_video_list: List[bool] = None,
        possible_resolutions: List = None,
        patch_size: int = None,
        pad_to_square: bool = None,
        resample: PILImageResampling = None,
        do_center_crop: bool = None,
        crop_size: int = None,
        do_rescale: bool = None,
        rescale_factor: float = None,
        do_normalize: bool = None,
        image_mean: Optional[Union[float, List[float]]] = None,
        image_std: Optional[Union[float, List[float]]] = None,
        do_convert_rgb: bool = None,
        return_tensors: Optional[Union[str, TensorType]] = None,
        data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
        input_data_format: Optional[Union[str, ChannelDimension]] = None,
        is_first_or_last_frames: List[bool] = False,
    ):
        """
        Preprocesses images using HCXVisionProcessor.

        This method prepares images for visual language models by applying resizing, padding, cropping,
        normalization, and tokenization into visual patches. In video mode, each frame is converted to
        a 1D sequence of patches. The `unpad` option is disabled when processing videos.

        Args:
            images (ImageInput): A single image or a batch of images (PIL, NumPy, or tensor format).
            do_resize (bool, optional): Whether to resize the image(s).
            size (Dict[str, int], optional): Resize target with keys `"height"` and `"width"`.
            anyres (bool, optional): Whether to use any-resolution processing with grid splitting.
            unpad (bool, optional): Whether to remove visual tokens that belong to padding areas (only in non-video mode).
            is_video_list (List[bool], optional): A list indicating which inputs are video frames.
            possible_resolutions (List, optional): List of resolution pairs allowed in `anyres` mode.
            patch_size (int, optional): Patch size for the Vision Transformer (ViT).
            pad_to_square (bool, optional): Whether to pad the image to a square.
            resample (PILImageResampling, optional): Resampling method to use for resizing.
            do_center_crop (bool, optional): Whether to apply center cropping.
            crop_size (int, optional): Target crop size for center cropping.
            do_rescale (bool, optional): Whether to rescale image pixel values.
            rescale_factor (float, optional): Factor for pixel rescaling, e.g., `1/255`.
            do_normalize (bool, optional): Whether to normalize using mean and std.
            image_mean (float or List[float], optional): Mean value(s) for normalization.
            image_std (float or List[float], optional): Standard deviation(s) for normalization.
            do_convert_rgb (bool, optional): Whether to convert the image to RGB.
            return_tensors (str or TensorType, optional): Desired output tensor type (e.g., "pt" for PyTorch).
            data_format (ChannelDimension, optional): Output data format (e.g., `ChannelDimension.FIRST`).
            input_data_format (str or ChannelDimension, optional): Format of the input image.
            is_first_or_last_frames (List[bool], optional): Flags indicating whether each image is a first/last video frame.

        Returns:
            Tuple:
                pixel_values (List[torch.Tensor]): A list of 4D image tensors ready for model input.
                image_sizes (List[List[int]]): A list of list containing the original width and height [width, height]
                    of each image, e.g., `[[width, height], ...]`.
                vision_query_lengths (List[int]): A list of integers representing the number of visual tokens
                    each image contributes to the LLM input.
        """
        do_resize = do_resize if do_resize is not None else self.do_resize
        size = size if size is not None else self.size
        size = get_size_dict(size, param_name="size", default_to_square=False)
        anyres = anyres if anyres is not None else self.anyres
        unpad = unpad if unpad is not None else self.unpad
        possible_resolutions = possible_resolutions if possible_resolutions is not None else self.possible_resolutions
        patch_size = patch_size if patch_size is not None else self.patch_size
        pad_to_square = pad_to_square if pad_to_square is not None else self.pad_to_square
        resample = resample if resample is not None else self.resample
        do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
        crop_size = crop_size if crop_size is not None else self.crop_size
        crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
        do_rescale = do_rescale if do_rescale is not None else self.do_rescale
        rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
        do_normalize = do_normalize if do_normalize is not None else self.do_normalize
        image_mean = image_mean if image_mean is not None else self.image_mean
        image_std = image_std if image_std is not None else self.image_std
        do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb

        images = make_list_of_images(images)

        if not valid_images(images):
            raise ValueError(
                "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
                "torch.Tensor, tf.Tensor or jax.ndarray."
            )

        if do_convert_rgb:
            images = [convert_to_rgb(image) for image in images]

        # All transformations expect numpy arrays.
        images = [to_numpy_array(image) for image in images]

        if is_scaled_image(images[0]) and do_rescale:
            logger.warning_once(
                "It looks like you are trying to rescale already rescaled images. If the input"
                " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
            )

        if input_data_format is None:
            # We assume that all images have the same channel dimension format.
            input_data_format = infer_channel_dimension_format(images[0])

        new_images = []
        image_sizes = [get_image_size(image, channel_dim=input_data_format) for image in images]
        vision_query_lengths = []

        assert crop_size["height"] == crop_size["width"]

        # Padding operations for the global image can become a bottleneck when the original image width or height is large.
        # To mitigate this, the image is first resized such that the longest side is scaled proportionally based on size["shortest_edge"],
        # and then padding is applied to reach the target dimensions.
        if anyres:
            anyres_global_images = copy.deepcopy(images)
            if pad_to_square:
                background_color = tuple(int(x * 255) for x in self.image_mean)
                anyres_global_images = [
                    resize_longside(
                        copy.deepcopy(image),
                        size["shortest_edge"],
                        resample,
                        input_data_format,
                    )
                    for image in anyres_global_images
                ]
                anyres_global_images = [
                    expand2square(
                        image,
                        background_color=background_color,
                        input_data_format=input_data_format,
                    )[0]
                    for image in anyres_global_images
                ]
            else:
                anyres_global_images = [
                    self.resize(
                        image=image,
                        size={
                            "height": size["shortest_edge"],
                            "width": size["shortest_edge"],
                        },
                        resample=resample,
                        input_data_format=input_data_format,
                    )
                    for image in anyres_global_images
                ]
        else:
            anyres_global_images = [None for _ in range(len(images))]
            if pad_to_square:
                background_color = tuple(int(x * 255) for x in self.image_mean)
                images = [
                    resize_longside(image, size["shortest_edge"], resample, input_data_format) for image in images
                ]
                images = [
                    expand2square(
                        image,
                        background_color=background_color,
                        input_data_format=input_data_format,
                    )[0]
                    for image in images
                ]

        num_queries_vis_abstractors = []
        num_queries_vis_abstractors_slow = []
        first_last_frames_slows = []

        for image, is_video, anyres_global_image, image_size in zip(
            images, is_video_list, anyres_global_images, image_sizes
        ):
            if is_video:
                num_queries_vis_abstractor = self.num_queries_vis_abstractor_video_fast
                num_queries_vis_abstractor_slow = self.num_queries_vis_abstractor_video_slow
            else:
                num_queries_vis_abstractor = self.num_queries_vis_abstractor
                num_queries_vis_abstractor_slow = 0

            num_queries_vis_abstractors.append(num_queries_vis_abstractor)
            num_queries_vis_abstractors_slow.append(num_queries_vis_abstractor_slow)
            first_last_frames_slows.append(self.first_last_frames_slow)

            if anyres:
                # convert image into a list of grids
                # we intentially use the same data format as the input data format
                image_grids = self.get_image_grids(
                    image,
                    possible_resolutions,
                    grid_size=crop_size["height"],
                    resample=resample,
                    data_format=input_data_format,
                    input_data_format=input_data_format,
                )
                # Global image (thumbnail) is not used for video inputs.
                if not is_video:
                    image_grids = [anyres_global_image] + image_grids
            else:
                image_grids = [image]

            pixel_values = self._preprocess(
                image_grids,
                do_resize=do_resize,
                size=size,
                resample=resample,
                do_center_crop=do_center_crop,
                crop_size=crop_size,
                do_rescale=do_rescale,
                rescale_factor=rescale_factor,
                do_normalize=do_normalize,
                image_mean=image_mean,
                image_std=image_std,
                data_format=data_format,
                input_data_format=input_data_format,
            )

            pixel_values = np.array(pixel_values)
            new_images.append(pixel_values)

            num_grids = pixel_values.shape[0]

            vision_query_length = determine_anyres_num_vision_patches(
                num_grids=num_grids,
                image_size=image_size,
                grid_size=crop_size["height"],
                patch_size=patch_size,
                possible_resolutions=possible_resolutions,
                anyres=anyres,
                unpad=False if is_video else unpad,
                num_queries_vis_abstractor=num_queries_vis_abstractor,
                num_queries_vis_abstractor_slow=num_queries_vis_abstractor_slow,
                is_video=is_video,
                first_last_frames_slow=self.first_last_frames_slow,
                is_first_or_last_frames=self.first_last_frames_slow,
            )

            vision_query_lengths.append(vision_query_length)

        data = {
            "pixel_values": [[torch.tensor(new_image) for new_image in new_images]],
            "image_sizes": [[[image_size[1], image_size[0]] for image_size in image_sizes]],
            "vision_query_lengths": [vision_query_lengths],
            "is_videos": [is_video_list],
            "num_queries_vis_abstractors": [num_queries_vis_abstractors],
            "num_queries_vis_abstractors_slow": [num_queries_vis_abstractors_slow],
            "first_last_frames_slows": [first_last_frames_slows],
        }

        return BatchFeature(data=data)

    def load_images_videos(self, vlm_chat):
        """
        Loads and prepares images or video frames from a VLM chat input.

        This function parses the input `vlm_chat` object, extracts image or video sources,
        and loads them into memory as PIL or NumPy images, ready for preprocessing.

        Args:
            vlm_chat: A VLM chat input structure containing multimodal elements
                    (e.g., images, videos, URLs, or file paths). The format is typically a list of messages
                    with associated media fields.

        Returns:
            List[Union[PIL.Image.Image, List[PIL.Image.Image]]]:
                A list of loaded images. For video entries, a list of frames is returned instead of a single image.
        """
        vlm_chat = copy.deepcopy(vlm_chat)

        new_vlm_chat = []
        all_images = []  # images + images_from_videos
        is_video_list = []

        for line in vlm_chat:
            if "content" in line:
                content = line["content"]

                if "image" in content:
                    if "filename" not in content:
                        content["filename"] = f"{uuid.uuid4().hex}.jpg"
                    image_pil = load_image(content["image"])
                    all_images.append(image_pil)
                    is_video_list.append(False)
                    new_vlm_chat.append(line)

                elif "video" in content:
                    video_bytesio = load_video_to_bytesio(content["video"])
                    pil_img_frames, video_time_stamp = process_video(
                        video_bytesio, self.max_num_grids, self.max_image_cnt, self.crop_size["width"]
                    )
                    all_images.extend(pil_img_frames)
                    is_video_list.extend([True] * len(pil_img_frames))

                    if "filename" not in content:
                        content["filename"] = f"{uuid.uuid4().hex}.mp4"

                    for i, image_time_stamp in enumerate(video_time_stamp):
                        new_line = copy.deepcopy(line)
                        basename, ext = os.path.splitext(content["filename"])
                        new_line["content"]["filename"] = f"{basename}-{i}{ext}"
                        new_line["content"]["video_time_stamp"] = image_time_stamp

                        if i == len(video_time_stamp) - 1:
                            new_line["content"]["is_final_grid"] = True

                            for last_frame_target_key in ["lens_keywords", "lens_local_keywords", "speech_to_text"]:
                                if last_frame_target_key in content:
                                    new_line["content"][last_frame_target_key] = content[last_frame_target_key]

                        new_vlm_chat.append(new_line)
                else:
                    new_vlm_chat.append(line)

        return new_vlm_chat, all_images, is_video_list


def process_video(video_bytesio, max_num_grids, max_image_cnt, vit_input_size):
    """
    Processes a video file and extracts frames suitable for vision transformer (ViT) input.

    The function reads video data from a BytesIO object, extracts a limited number of frames
    based on `max_num_grids` and `max_image_cnt`, and resizes them to the appropriate ViT input size.

    Args:
        video_bytesio (io.BytesIO): A BytesIO object containing the raw video file data.
        max_num_grids (int): The maximum number of grids allowed (e.g., for tiling or patching).
        max_image_cnt (int): The maximum number of frames to extract from the video.
        vit_input_size (int): The desired input size (height and width) for the ViT model.

    Returns:
        List[np.ndarray]: A list of processed video frames as NumPy arrays, each resized to (vit_input_size, vit_input_size).
    """
    frames, time_interval = video_decoder(
        video_bytesio, max_num_grids=max_num_grids, max_image_cnt=max_image_cnt, default_interval=0.4
    )
    pil_img_frames, video_time_stamp = combine_frames_into_images(
        frames, time_interval, max_grid_shape=(max_num_grids, 1), vit_input_size=vit_input_size
    )

    return pil_img_frames, video_time_stamp


def load_image(image_src):
    """
    Loads an image from various sources (file path, URL, base64 string, or raw bytes)
    and returns it as a PIL Image object.

    Args:
        image_src (str or bytes): The image source. It can be:
            - A local file path
            - A URL
            - A base64-encoded string
            - Raw image bytes

    Returns:
        PIL.Image.Image: The loaded image as a PIL Image object.

    Raises:
        ValueError: If the image cannot be loaded or the format is unsupported.
        TypeError: If the input is not of type str or bytes.
    """
    try:
        # 1. If input is bytes type
        if isinstance(image_src, bytes):
            return Image.open(io.BytesIO(image_src))

        # 2. If input is str type (path, URL, base64)
        if isinstance(image_src, str):
            # 2a. Check if it's a Base64 data URI format ('data:image/...')
            if image_src.startswith("data:image"):
                try:
                    # Remove the 'data:image/...;base64,' part and decode
                    header, encoded = image_src.split(",", 1)
                    image_bytes = base64.b64decode(encoded)
                    return Image.open(io.BytesIO(image_bytes))
                except (ValueError, base64.binascii.Error) as e:
                    raise ValueError(f"Invalid base64 data URI format: {e}") from e

            # 2b. Check if it's a URL format ('http://' or 'https://')
            elif image_src.startswith("http://") or image_src.startswith("https://"):
                try:
                    response = requests.get(image_src, stream=True, timeout=10)
                    response.raise_for_status()  # Raise an exception for HTTP errors
                    image_bytes = response.content
                    return Image.open(io.BytesIO(image_bytes))
                except requests.exceptions.RequestException as e:
                    raise ValueError(f"Error loading image from URL '{image_src}': {e}") from e

            # 2c. Assume it's a local file path
            else:
                return Image.open(image_src)

        else:
            raise TypeError(f"Unsupported image_src type: {type(image_src)}")

    # Common exception handling
    except FileNotFoundError:
        raise ValueError(f"Image loading error: File not found '{image_src}'")
    except UnidentifiedImageError:
        raise ValueError("Image loading error: Cannot identify image file format.")
    except IOError as e:
        raise ValueError(f"Image loading error (I/O): {e}") from e
    except Exception as e:
        raise ValueError(f"Unexpected error during image loading: {e}") from e


def load_video_to_bytesio(video_src):
    """
    Loads video data from various sources (file path, URL, base64 string, or raw bytes)
    and returns an `io.BytesIO` object containing the raw video content.

    Args:
        video_src (str or bytes): The video source. Supported formats include:
            - Local file path
            - URL
            - Base64-encoded data URI string
            - Raw video bytes

    Returns:
        io.BytesIO: A `BytesIO` object containing the loaded video data.

    Raises:
        ValueError: If the video cannot be loaded due to issues such as an invalid path,
                    URL failure, malformed base64 string, or unsupported format.
        TypeError: If the input is not a `str` or `bytes` object.
    """
    video_bytes = None
    try:
        # 1. If input is bytes type
        if isinstance(video_src, bytes):
            video_bytes = video_src

        # 2. If input is str type (path, URL, base64)
        elif isinstance(video_src, str):
            # 2a. Check if it's a Base64 data URI format ('data:video/...')
            if video_src.startswith("data:video"):
                try:
                    # Remove the 'data:video/...;base64,' part and decode
                    header, encoded = video_src.split(",", 1)
                    video_bytes = base64.b64decode(encoded)
                except (ValueError, base64.binascii.Error) as e:
                    raise ValueError(f"Invalid base64 data URI format: {e}") from e

            # 2b. Check if it looks like a URL
            elif urlparse(video_src).scheme in ("http", "https"):
                try:
                    response = requests.get(
                        video_src, stream=True, timeout=30
                    )  # Increased timeout for potentially large videos
                    response.raise_for_status()  # Raise an exception for HTTP errors (4xx or 5xx)
                    # Read all content from the stream into bytes
                    video_bytes = response.content
                except requests.exceptions.MissingSchema:
                    # If urlparse thinks it's a scheme but requests disagrees (e.g., "http:/example.com")
                    # Treat it as a potential file path below.
                    pass
                except requests.exceptions.RequestException as e:
                    raise ValueError(f"Error loading video from URL '{video_src}': {e}") from e

            # 2c. Assume it's a local file path if not base64 or confirmed URL
            if video_bytes is None:  # Only attempt file read if not already loaded as base64 or URL failed gracefully
                # Check if it could potentially be a file path
                # Note: This check is basic. A string like "http:/path/file" might incorrectly be treated as a path here
                # if the requests call failed due to MissingSchema. More robust path validation could be added.
                if (
                    os.path.exists(video_src) or "/" in video_src or "\\" in video_src
                ):  # Basic check if it resembles a path
                    try:
                        with open(video_src, "rb") as f:
                            video_bytes = f.read()
                    except FileNotFoundError:
                        raise ValueError(f"Video loading error: File not found at path '{video_src}'")
                    except IsADirectoryError:
                        raise ValueError(f"Video loading error: Path '{video_src}' is a directory, not a file.")
                    except IOError as e:
                        raise ValueError(f"Video loading error (I/O) for path '{video_src}': {e}") from e
                else:
                    # If it's not base64, not a valid downloadable URL, and doesn't look like a path/doesn't exist
                    raise ValueError(f"Unsupported string input format or resource not found: '{video_src}'")

        # 3. If the type is unsupported
        else:
            raise TypeError(f"Unsupported video_src type: {type(video_src)}")

        # Final check if video_bytes was successfully obtained
        if video_bytes is None:
            raise ValueError(f"Could not load video data from the provided source: {video_src}")

        # Return the bytes wrapped in BytesIO
        return io.BytesIO(video_bytes)

    # Catch specific exceptions first for better error reporting
    except FileNotFoundError as e:  # Should be caught above, but as a safeguard
        raise ValueError(f"Video loading error: File not found '{video_src}'") from e
    except requests.exceptions.RequestException as e:  # Already handled, but for clarity
        raise ValueError(f"Video loading error (Network): {e}") from e
    except (ValueError, TypeError) as e:  # Re-raise ValueErrors/TypeErrors raised intentionally within the try block
        raise e
    except Exception as e:
        # Catch any other unexpected errors during processing
        raise ValueError(f"Unexpected error during video loading from source '{video_src}': {e}") from e


def video_decoder(video_bytesio, max_num_grids, max_image_cnt, default_interval=0.4):
    """
    Decodes video data from a BytesIO object and returns a list of extracted frames.

    Args:
        video_bytesio (io.BytesIO): A BytesIO object containing the raw video data.
        max_num_grids (int): Maximum number of grids allowed per image. Used to determine how many frames to extract.
        max_image_cnt (int): Maximum number of frames to extract from the video.
        default_interval (float, optional): Default time interval (in seconds) between frames. Used when frame rate info is unavailable. TODO: make configurable.

    Returns:
        Tuple:
            frames (List[PIL.Image.Image]): A list of extracted frames as PIL Images.
            time_interval (float): Time interval (in seconds) between selected frames.
    """
    error_messages = []
    frames = []

    # 1. Try decoding the video using Decord.
    try:
        vr = VideoReader(video_bytesio, ctx=cpu(0), num_threads=8)
        fps = vr.get_avg_fps()
        play_time = len(vr) / fps
        total_frames = len(vr)
        frame_indices, time_interval = extract_frame_indices(
            play_time, total_frames, fps, max_num_grids, max_image_cnt, default_interval=default_interval
        )  # Sample every 0.4 seconds; if the video is too long, apply uniform sampling instead.
        if frame_indices is None:
            frame_indices = range(len(vr))  # Convert all frames.
        batch_frames = vr.get_batch(frame_indices).asnumpy()
        frames = [Image.fromarray(frame).convert("RGB") for frame in batch_frames]
        return frames, time_interval
    except Exception as e:
        print("error with decord")
        error_messages.append(f"Decord 실패: {e}")

    # 2. Fallback: Try decoding the video using PyAV.
    try:
        container = av.open(video_bytesio)
        fps = container.streams.video[0].average_rate
        play_time = len(container) / fps
        total_frames = len(container)
        frame_indices, time_interval = extract_frame_indices(
            play_time, total_frames, fps, max_num_grids, max_image_cnt, default_interval=default_interval
        )  # Sample frames every 0.4 seconds. If the video is long, use uniform sampling to limit the number of frames.
        # Even if frame_indices were assigned using Decord, reprocess them to be compatible with PyAV.
        target_indices = None if frame_indices is None else set(frame_indices)
        frames = []
        for i, frame in enumerate(container.decode(video=0)):
            if target_indices is not None and i not in target_indices:
                continue  # Skip frames that are not in the required indices.
            pil_frame = Image.fromarray(frame.to_ndarray(format="rgb24")).convert("RGB")
            frames.append(pil_frame)
        if frames:
            return frames, time_interval
        else:
            raise Exception("Decoding with PyAV succeeded, but no frames were extracted.")
    except Exception as e:
        error_messages.append(f"PyAV failed: {e}")

    # 3. Fallback: Try decoding the video using OpenCV.
    try:
        byte_data = np.frombuffer(video_bytesio.getvalue(), dtype=np.uint8)
        video = cv2.imdecode(byte_data, cv2.IMREAD_UNCHANGED)

        cap = cv2.VideoCapture(video)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        play_time = total_frames / fps
        frame_indices, time_interval = extract_frame_indices(
            play_time, total_frames, fps, max_num_grids, max_image_cnt, default_interval=default_interval
        )  # Sample frames every 0.4 seconds; if the video is too long, apply uniform sampling to limit the total number of frames.
        if frame_indices is None:
            frame_indices = range(total_frames)  # Convert all frames.

        index_set = set(frame_indices)  # Convert to a set for faster lookup.
        current_index = 0

        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            if current_index in index_set:
                frames.append(Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)).convert("RGB"))
            current_index += 1
            if current_index > max(index_set):  # Stop processing once all required indices have been handled.
                break

        cap.release()
        if frames:
            return frames, time_interval
    except Exception as e:
        error_messages.append(f"OpenCV failed: {e}")

    if error_messages:
        raise Exception(f"All decoding attempts have failed.: {error_messages}")


def convert_format_for_multi_image(img, json, convert_key_list=["words", "text", "objects", "entities"]):
    """
    Converts the format of image and annotation data from a single-image dataset to a multi-image dataset format.

    Single-image datasets typically return a single image and its associated annotation as individual objects.
    This function wraps them in a dictionary format used by multi-image datasets.

    Args:
        img: The input image (e.g., a PIL Image or NumPy array).
        json: The annotation data associated with the image.
        convert_key_list (List[str], optional): A list of keys to extract and convert from the original JSON.
            Defaults to ["words", "text", "objects", "entities"].

    Returns:
        Tuple[Dict, Dict]:
            - A dictionary mapping image IDs to images (e.g., {"image_0": img}).
            - A dictionary mapping image IDs to corresponding annotation JSONs (with filtered keys).
    """
    is_multi_image_dataset = isinstance(img, dict)
    if not is_multi_image_dataset:
        img = {"00": img}

        for convert_key in convert_key_list:
            if convert_key in json:
                json[convert_key] = {"00": json[convert_key]}

        for json_key in json:
            if "region" in json_key:
                json[json_key] = {"00": json[json_key]}

    return is_multi_image_dataset, img, json


def convert_tags_for_video(img, json):
    """
    Converts <video_00> tags to <image_xx> tags based on the number of video frames.

    In video datasets, annotations often use a generic <video_00> tag. This function replaces that tag
    with frame-specific tags such as <image_00>, <image_01>, ..., <image_NN> based on the number of frames in `img`.

    Args:
        img: A list of video frames (e.g., list of PIL Images or NumPy arrays).
        json: The annotation data containing <video_00> tags to be replaced.

    Returns:
        Dict: The updated annotation JSON with frame-specific <image_xx> tags.
    """
    image_tag = "".join([f"<image_{idx:02d}>" for idx in range(len(img))])
    # image_tag = "<image_00>"  # Use this format to construct and insert image-specific tags.
    for json_key in json:
        if "qa_pairs" in json_key:
            new_qa_pairs = []
            for qa_pair in json[json_key]:
                question = qa_pair[0]
                # Replace <video_00> tags with corresponding <image_xx> tags.
                question = question.replace("<video_00>", image_tag)
                new_qa_pairs.append([question, qa_pair[1]])
            json[json_key] = new_qa_pairs

    return img, json


def split_list(input_list, split_value):
    """
    Splits a list into sublists using a specified delimiter value.

    Each time `split_value` is encountered in `input_list`, a new sublist is started.
    The delimiter itself is not included in the output.

    Args:
        input_list (List[Any]): The input list to split.
        split_value (Any): The value used as the delimiter for splitting.

    Returns:
        List[List[Any]]: A list of sublists, split by the specified delimiter.

    Example:
        >>> split_list(["a", "b", "|", "c", "d", "|", "e"], "|")
        [['a', 'b'], ['c', 'd'], ['e']]
    """
    temp_list = []
    result = []

    for value in input_list:
        if value == split_value:
            result.append(temp_list)
            temp_list = []
        else:
            temp_list.append(value)
    result.append(temp_list)

    return result


def combine_frames_into_images(frames, time_interval, max_grid_shape=(3, 3), vit_input_size=378):
    """
    Combines a sequence of video frames into grid-based images and generates corresponding time range labels.

    Frames are grouped and arranged into a grid (e.g., 3x3) such that each combined image contains up to
    `max_grid_shape[0] * max_grid_shape[1]` frames. Each combined image is resized to the given ViT input size.

    Args:
        frames (List[PIL.Image.Image]): A list of frames extracted from a video.
        time_interval (float): Time interval (in seconds) between consecutive frames.
        max_grid_shape (Tuple[int, int], optional): The maximum grid shape as (rows, cols). Defaults to (3, 3).
        vit_input_size (int, optional): The target size (height and width) for the Vision Transformer input. Defaults to 378.

    Returns:
        Tuple:
            image_list (List[PIL.Image.Image]): A list of grid-combined images.
            image_time_stamps (List[str]): A list of time span labels for each combined image,
                e.g., ["0.00s~1.50s", "1.50s~3.00s", ...].
    """
    # grid_size = int(np.sqrt(max_num_grids))
    # assert grid_size**2 == max_num_grids, "max_num_grids must be a perfect square."
    max_num_grids = max_grid_shape[0] * max_grid_shape[1]
    assert (
        max_grid_shape[1] == 1
    ), f"For video processing, decided to concatenate frames horizontally into a wide image."

    # List to store the resulting combined images.
    image_list = []

    # Calculate the number of canvases needed.
    num_frames = len(frames)
    num_canvases = num_frames // max_num_grids
    leftover_frames = num_frames % max_num_grids

    time_stamp = 0  # second
    image_time_stamps = []

    for canvas_idx in range(num_canvases):
        # Initialize the current canvas.
        combined_image = Image.new(
            "RGB", (vit_input_size * max_grid_shape[0], vit_input_size * max_grid_shape[1]), color=(0, 0, 0)
        )

        # Determine the frames to fill in the current canvas.
        start_idx = canvas_idx * max_num_grids
        end_idx = min(start_idx + max_num_grids, num_frames)

        for idx in range(start_idx, end_idx):
            img = frames[idx]

            # Resize each frame to a square shape.
            img_resized = img.resize((vit_input_size, vit_input_size))

            # Calculate the (row, column) position to place the frame within the grid layout.
            local_idx = idx - start_idx
            x_offset = (local_idx % max_grid_shape[0]) * vit_input_size
            y_offset = (local_idx // max_grid_shape[0]) * vit_input_size

            # Calculate the position to place the frame in the grid.
            combined_image.paste(img_resized, (x_offset, y_offset))

        # Append the current canvas to the result list.
        image_list.append(combined_image)
        frame_cnt = end_idx - start_idx
        image_time_stamps.append(f"{time_stamp:.2f}s~{time_stamp + frame_cnt * time_interval:.2f}s")
        time_stamp += frame_cnt * time_interval

    if leftover_frames > 0:
        # canvas_idx might be undefined; default to 0 if not previously assigned to avoid "referenced before assignment" error.
        canvas_idx = num_canvases
        # Add the remaining frames to the final canvas.
        combined_image = Image.new("RGB", (vit_input_size * leftover_frames, vit_input_size * 1), color=(0, 0, 0))

        for idx in range(leftover_frames):
            img = frames[num_canvases * max_num_grids + idx]

            # Resize the frame to a square (equal width and height).
            img_resized = img.resize((vit_input_size, vit_input_size))

            # Calculate the (row, column) position to place the frame within the grid layout.
            x_offset = (idx % leftover_frames) * vit_input_size
            y_offset = (idx // leftover_frames) * vit_input_size

            # Calculate the position to place the frame within the grid layout.
            combined_image.paste(img_resized, (x_offset, y_offset))

        # Add the current canvas to the list of combined images.
        image_list.append(combined_image)
        frame_cnt = leftover_frames
        image_time_stamps.append(f"{time_stamp:.2f}s~{time_stamp + frame_cnt * time_interval:.2f}s")
        time_stamp += frame_cnt * time_interval

    return image_list, image_time_stamps


def extract_frame_indices(play_time, total_frames, fps, max_num_grids, max_image_cnt, default_interval=0.4):
    """
    Extracts specific frame indices from a video based on duration, frame count, and sampling strategy.

    The function determines which frames to extract given the video duration (`play_time`),
    total frame count, and frame rate. It samples frames at regular intervals (default: 0.4s),
    but if the number of frames exceeds the limit defined by `max_num_grids * max_image_cnt`,
    it performs uniform sampling to stay within that limit.

    Args:
        play_time (float): Total play time of the video in seconds.
        total_frames (int): Total number of frames in the video.
        fps (float): Frames per second of the video.
        max_num_grids (int): Maximum number of grids to display.
        max_image_cnt (int): Maximum number of images per grid.
        default_interval (float, optional): Interval in seconds between frame samples. Defaults to 0.4.

    Returns:
        Tuple:
            frame_indices (List[int]): A list of selected frame indices.
            time_interval (float): Time interval between selected frames (in seconds).
    """

    # Calculate how many frames to extract with the default interval
    default_frame_count = int(play_time / default_interval)

    # Maximum frames allowed based on max_num_grids and max_image_cnt
    max_frames_allowed = max_num_grids * max_image_cnt

    # Determine whether we can use the default interval or need uniform sampling
    if default_frame_count <= max_frames_allowed:
        # Default interval is sufficient, extract frames every 0.4 seconds
        frame_interval = int(total_frames / default_frame_count)
    else:
        # Use uniform sampling to fit within max_frames_allowed
        frame_interval = int(total_frames / max_frames_allowed)

    # Extract frame indices at the calculated interval
    selected_indices = list(range(0, total_frames, frame_interval))

    time_interval = frame_interval / fps

    # Ensure the number of selected indices does not exceed max_frames_allowed
    return selected_indices[:max_frames_allowed], time_interval