File size: 82,129 Bytes
42c6bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bc1da
42c6bee
 
 
 
 
 
 
 
 
 
427c32f
42c6bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39ae30a
42c6bee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
import ast
import contextlib
import gc
import json
import math
import os
from dataclasses import dataclass
from functools import partial
from itertools import chain
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.distributed as dist
import torch.nn as nn
from einops import rearrange
from timm.layers import LayerNorm, LayerNorm2d
from timm.models.regnet import RegStage
from torch.nn import CrossEntropyLoss
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForCausalLM,
    AutoTokenizer,
    PreTrainedModel,
)
from transformers.generation.utils import GenerationMixin
from transformers.modeling_utils import (
    is_fsdp_enabled,
    is_local_dist_rank_0,
    no_init_weights,
)
from transformers.models.auto import CONFIG_MAPPING
from transformers.utils import ModelOutput

from .configuration_hyperclovax import HCXVisionConfig
from .preprocessor import select_best_resolution

EOT = "<|endofturn|>"
IMG_LOC = "<|dummy3|>"


def get_rank():
    if dist.is_initialized():
        return dist.get_rank()
    return 0


def get_world_size():
    if torch.distributed.is_initialized():
        world_size = torch.distributed.get_world_size()
    else:
        world_size = 1
    return world_size


def unpad_image(tensor: torch.Tensor, original_size: Tuple[int, int]) -> torch.Tensor:
    """Unpads a PyTorch tensor of a padded and resized image.

    This function removes padding from a tensor image that was previously padded and resized.
    The padding is removed based on the aspect ratio difference between the original and current image dimensions.

    Args:
        tensor: The image tensor, assumed to be in CxHxW format.
        original_size: The original size of the image as (width, height).

    Returns:
        The unpadded image tensor.

    Examples:
        >>> import torch
        >>> # Example 1: Unpadding with height padding
        >>> padded_tensor = torch.randn(1, 64, 48)  # Padded tensor (C=1, H=64, W=48)
        >>> original_size = (32, 32)  # Original size (width=32, height=32)
        >>> unpadded_tensor = unpad_image(padded_tensor, original_size)
        >>> unpadded_tensor.shape
        torch.Size([1, 48, 48])
        >>> # Example 2: Unpadding with width padding
        >>> padded_tensor = torch.randn(1, 48, 64)  # Padded tensor (C=1, H=48, W=64)
        >>> original_size = (32, 32)  # Original size (width=32, height=32)
        >>> unpadded_tensor = unpad_image(padded_tensor, original_size)
        >>> unpadded_tensor.shape
        torch.Size([1, 48, 48])
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    if original_aspect_ratio > current_aspect_ratio:
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding : current_height - padding, :]
    else:
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding : current_width - padding]

    return unpadded_tensor


def get_anyres_image_grid_shape(
    image_size: Tuple[int, int],
    grid_pinpoints: Union[str, List[Tuple[int, int]]],
    patch_size: int,
) -> Tuple[int, int]:
    """Calculates the image patch grid shape after any-resolution preprocessing.

    Selects the optimal resolution from predefined grid pinpoints based on input image
    dimensions using `select_best_resolution`, then computes the grid layout by
    dividing the selected resolution by the patch size using integer division.

    Args:
        image_size (Tuple[int, int]): Original image dimensions in (width, height) format.
        grid_pinpoints (Union[str, List[Tuple[int, int]]]): Accepts either:
            - List of (height, width) resolution tuples
            - String representation of list (e.g., "[(224, 224), (336, 336)]")
        patch_size (int): Spatial dimension of square patches for grid division.

    Returns:
        Tuple[int, int]: Grid dimensions as (num_patches_width, num_patches_height).

    Examples:
        >>> # Basic case with list input
        >>> get_anyres_image_grid_shape((1000, 800), [(224, 224), (448, 448)], 112)
        (4, 4)

        >>> # Basic case with string input
        >>> get_anyres_image_grid_shape((600, 400), "[(336, 336), (672, 672)]", 112)
        (6, 6)

        >>> # Case where resolution is not perfectly divisible by patch_size
        >>> # select_best_resolution picks (224, 224). 224 // 100 = 2
        >>> get_anyres_image_grid_shape((500, 500), [(224, 224)], 100)
        (2, 2)

        >>> # Different patch size
        >>> # select_best_resolution picks (448, 448). 448 // 224 = 2
        >>> get_anyres_image_grid_shape((1200, 900), [(448, 448), (224, 224)], 224)
        (2, 2)

    Note:
        String-formatted grid_pinpoints are converted via ast.literal_eval. Invalid formats
        may raise syntax exceptions. The actual resolution selection depends on the
        implementation of `select_best_resolution`. The doctests assume
        `select_best_resolution` picks the *first* resolution provided in `grid_pinpoints`.
    """
    possible_resolutions = grid_pinpoints if isinstance(grid_pinpoints, list) else ast.literal_eval(grid_pinpoints)

    original_width, original_height = image_size
    height, width = select_best_resolution((original_height, original_width), possible_resolutions)
    return width // patch_size, height // patch_size


def reshape_and_unpad_image_features(
    image_feature: torch.Tensor,
    height: int,
    width: int,
    image_size: Tuple[int, int],
    possible_resolutions: List[Tuple[int, int]],
    grid_size: int,
    unpad: bool,
    image_newline: torch.Tensor,
) -> torch.Tensor:
    """Reshapes and processes image features with optional unpadding operation.

    Processes input image features by:
    1. Separating base features from spatial features
    2. Reshaping spatial features into a 5D tensor (num_patch_height, num_patch_width, height, width, channels)
    3. Performing either unpadding operation or simple reshaping based on 'unpad' flag
    4. Concatenating processed features with base features

    Args:
        image_feature: Input tensor containing image features with shape
            [1 + num_patches, feature_dim] where the first element is the base feature
        height: Original image height in pixels
        width: Original image width in pixels
        image_size: Target image size as (width, height) tuple
        possible_resolutions: List of possible [height, width] resolutions for multi-scale processing
        grid_size: Grid dimension for patch arrangement
        unpad: Flag to enable unpadding operation
        image_newline: Special token tensor used as separator when unpadding

    Returns:
        torch.Tensor: Processed image features tensor with shape [1 + num_processed_patches, feature_dim]

    Raises:
        AssertionError: If base feature dimension doesn't match height*width
    """
    base_image_feature = image_feature[0]
    image_feature = image_feature[1:]

    assert (
        height * width == base_image_feature.shape[0]
    ), f"height: {height}, width: {width}, base_image_feature.shape[0]: {base_image_feature.shape[0]}"

    num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_size, possible_resolutions, grid_size)
    image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)

    if unpad:
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_size)
        image_feature = torch.cat(
            (
                image_feature,
                image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device),
            ),
            dim=-1,
        )
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
    else:
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.flatten(0, 3)
    image_feature = torch.cat((base_image_feature, image_feature), dim=0)

    return image_feature


def anyres_postprocessing(
    image_forward_outs: torch.FloatTensor,
    split_sizes: List[int],
    image_sizes: List[List[int]],
    possible_resolutions: List[Tuple[int, int]],
    is_videos: List[bool],
    patch_size: int,
    grid_size: int,
    image_newline: torch.FloatTensor,
    num_queries_vis_abstractor: int = -1,
    unpad: bool = False,
) -> List[torch.FloatTensor]:
    """Processes 2D visual features into 1D sequences with post-processing steps.

    Performs AnyRes postprocessing by flattening 2D visual features from grid partitions into 1D sequences, adding
    newline embeddings at row boundaries for images, and optionally removing padding regions based on original image
    sizes. For video data, processes each frame's features separately into a single sequence per video and disables
    unpadding and newline insertion.

    Args:
        image_forward_outs (List[torch.FloatTensor]): List of input tensors with shape
            (number_of_images_in_grid, total_patches, feature_dim) containing visual features.
        split_sizes (List[int]): A list containing the number of patches for each sample in the batch. The sum of
            `split_sizes` should equal `image_forward_outs.shape[0]`.
        image_sizes (List[List[int]]): A list where each element is a list `[width, height]` representing the original
            dimensions of the corresponding image sample. Used for unpadding.
        possible_resolutions (List[Tuple[int, int]]): A list of supported resolution tuples `(height, width)` used by
            `reshape_and_unpad_image_features` for spatial reconstruction, especially during unpadding.
        is_videos (List[bool]): A list of boolean flags indicating whether each corresponding sample in the batch is a
            video [`True`] or an image [`False`].
        patch_size (int): The spatial dimension (height and width) of the square patches the image was divided into.
        grid_size (int): The spatial dimension (height and width) of the square grid onto which patches are mapped.
            `grid_size` should be divisible by `patch_size`.
        image_newline (torch.FloatTensor): A learnable tensor representing the newline embedding, typically with shape
            (1, feature_dim). Added after each row of image patches when not unpadding.
        num_queries_vis_abstractor (int, optional): If a visual abstractor with a fixed number of output queries is used
            instead of grid patching, this specifies the number of queries. Must be a perfect square if > 0.
            Defaults to -1 (indicating standard grid patching is used).
        unpad (bool, optional): If `True`, removes padding tokens from image features based on `image_sizes` and
            `possible_resolutions`. Does not apply to video features. Defaults to False.

    Returns:
        List[torch.FloatTensor]: A list of tensors, where each tensor represents the processed 1D sequence of visual
            features for a single sample from the input batch. The length of the sequence varies depending on processing
            (unpadding, newlines, video flattening).

    Raises:
        AssertionError: If `num_queries_vis_abstractor` is greater than 0 but not a perfect square.
    """
    height = width = grid_size // patch_size

    if num_queries_vis_abstractor > 0:
        assert (num_queries_vis_abstractor**0.5).is_integer(), "n_queries must be square number"
        height = width = int(num_queries_vis_abstractor**0.5)

    image_features = torch.split(image_forward_outs, split_sizes, dim=0)

    # post-processing (unpad, add newline)
    new_image_features = []
    for image_idx, (image_feature, is_video) in enumerate(zip(image_features, is_videos)):
        if image_feature.shape[0] > 1:
            if not is_video:
                image_feature = reshape_and_unpad_image_features(
                    image_feature=image_feature,
                    height=height,
                    width=width,
                    image_size=image_sizes[image_idx],
                    possible_resolutions=possible_resolutions,
                    grid_size=grid_size,  # Pass grid info if needed by helper
                    unpad=unpad,
                    image_newline=image_newline,
                )
            else:
                image_feature = image_feature.flatten(0, 1)
        else:
            image_feature = image_feature[0]
            if unpad and not is_video:
                image_feature = torch.cat((image_feature, image_newline[None].to(image_feature.device)), dim=0)
        new_image_features.append(image_feature)
    image_features = new_image_features
    return image_features


def adaptive_anyres_postprocessing(
    image_forward_outs: torch.FloatTensor,
    image_sizes: List[List[int]],
    possible_resolutions: List[Tuple[int, int]],
    is_videos: List[bool],
    group_ids: List[List[int]],
    num_queries_vis_abstractors: List[List[int]],
    grid_size: int,
    image_newline: torch.FloatTensor,
    unpad: bool = False,
) -> List[torch.FloatTensor]:
    """Adaptive AnyRes postprocessing for multi-group feature aggregation.

    Processes 2D visual features into 1D sequences with group-wise adaptive processing. Each image can belong to
    multiple processing groups with different query configurations. Features are processed per group and aggregated
    according to group_ids.

    Args:
        image_forward_outs (List[torch.FloatTensor]): List of input tensors with shape
            (number_of_images_in_grid, total_patches, feature_dim) containing visual features.
        image_sizes (List[List[int]]): Original image dimensions for each sample. [[width, height], ... ]
        possible_resolutions (List[Tuple[int, int]]): Supported resolutions. [[height, width], ... ]
        is_videos (List[bool]): Flags indicating video inputs
        group_ids (List[List[int]]): Group indices for feature aggregation. Each group means a single grid.
        num_queries_vis_abstractors (List[List[int]]): Query numbers per group
        grid_size (int): Total grid size for spatial processing
        image_newline (torch.FloatTensor): Sample-wise config. Newline embedding tensor
        unpad (bool, optional): Sample-wise config. Enable padding removal. Defaults to False.

    Returns:
        List[torch.FloatTensor]: Aggregated features per group

    Raises:
        AssertionError: If num_queries is not square number in any group
    """
    # post-processing (unpad, add newline)
    new_image_features = []
    for image_idx, (image_feature, is_video) in enumerate(zip(image_forward_outs, is_videos)):
        num_queries_vis_abstractor = num_queries_vis_abstractors[image_idx]
        assert (num_queries_vis_abstractor**0.5).is_integer(), "n_queries must be square number"
        height = width = int(num_queries_vis_abstractor**0.5)

        if image_feature.shape[0] > 1:
            if not is_video:
                image_feature = reshape_and_unpad_image_features(
                    image_feature=image_feature,
                    height=height,
                    width=width,
                    image_size=image_sizes[image_idx],
                    possible_resolutions=possible_resolutions,
                    grid_size=grid_size,
                    unpad=unpad,
                    image_newline=image_newline,
                )
            else:
                image_feature = image_feature.flatten(0, 1)
        else:
            image_feature = image_feature[0]
            if unpad and not is_video:
                image_feature = torch.cat((image_feature, image_newline[None].to(image_feature.device)), dim=0)
        new_image_features.append(image_feature)

    image_features = [
        torch.cat([new_image_features[group_id] for group_id in group_ids_list], dim=0) for group_ids_list in group_ids
    ]
    return image_features


@dataclass
class HCXVisionOutput(ModelOutput):
    """Output class for vision models, containing various computation results.

    Args:
        loss (Optional[torch.FloatTensor], optional): Total cross-entropy loss calculated from logits and labels.
        loss_per_sample (Optional[torch.FloatTensor], optional): Per-sample loss values for advanced loss processing.
        logits (torch.FloatTensor): Classification scores (before SoftMax) of shape (batch_size, num_classes).
        past_key_values (Optional[Tuple[Tuple[torch.FloatTensor]]], optional): Contains precomputed hidden-states
            that can be used (see `past_key_values` input) to speed up sequential decoding.
        hidden_states (Optional[Tuple[torch.FloatTensor]], optional):
            Tuple of torch.FloatTensor (one for the output of the embeddings + one for the output of each layer) of
            shape (batch_size, sequence_length, hidden_size).
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (Optional[Tuple[torch.FloatTensor]], optional): Tuple of torch.FloatTensor (one for each layer)
            of shape (batch_size, num_heads, sequence_length, sequence_length). Attentions weights after the attention
            softmax, used to compute the weighted average in the self-attention heads.
    """

    loss: Optional[torch.FloatTensor] = None
    loss_per_sample: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class HCXVisionForCausalLM(PreTrainedModel, GenerationMixin):
    """HCX Vision model for causal language modeling with vision-language capabilities.

    This class combines a vision model with a language model to create a multimodal model
    capable of processing images or videos and generating text based on the visual inputs.

    Attributes:
        config_class: Configuration class for the model.
        vision_model_name: Name of the vision model component.
        _no_split_modules: List of modules that should not be split during parallel processing.
        supports_gradient_checkpointing: Whether the model supports gradient checkpointing.
        _skip_keys_device_placement: Keys to skip during device placement.
    """

    config_class = HCXVisionConfig
    vision_model_name = "vision_model"
    _no_split_modules = ["CLIPAttention", "SiglipVisionModel"]
    supports_gradient_checkpointing = True
    _skip_keys_device_placement = "past_key_values"

    def __init__(
        self,
        config: HCXVisionConfig,
        **kwargs: Optional[Any],
    ) -> None:
        """Initialize the HCXVisionForCausalLM model.

        Args:
            config: Configuration object for the model containing parameters for both
                vision and language components.
            **kwargs: Additional keyword arguments:
                - use_liger: Whether to use liger kernel for hyperclovax models.
                - use_fused_ce: Whether to use fused cross-entropy loss.
                - use_sum_loss: Whether to use sum reduction for loss instead of mean.
                - is_safetensor_save: Whether to save model using safetensors format.

        Raises:
            ValueError: If vision_config is not defined or if language_config is not defined.
        """
        super().__init__(config)

        self.flag_changed_max_position_embeddings = False

        vision_model_type = config.vision_config["model_type"]
        if vision_model_type in CONFIG_MAPPING:
            vision_config = CONFIG_MAPPING[vision_model_type](**config.vision_config)
            vision_config.auto_map = {}
        else:
            if config.vision_model_name_or_path is not None:
                vision_config = AutoConfig.from_pretrained(config.vision_model_name_or_path, trust_remote_code=True)
            elif config.vision_config["_name_or_path"] is not None:
                vision_config = AutoConfig.from_pretrained(
                    config.vision_config["_name_or_path"], trust_remote_code=True
                )
            else:
                raise ValueError("vision_config is not defined")

        self.use_liger = kwargs.pop("use_liger", False)
        self.use_fused_ce = kwargs.pop("use_fused_ce", False)
        self.reduction = "sum" if kwargs.pop("use_sum_loss", False) else "mean"

        self.vision_config = vision_config
        vision_config.anyres = config.anyres
        vision_config.max_num_grids = config.max_num_grids

        possible_resolutions = []
        if config.anyres:
            assert config.max_num_grids > 0
            for i in range(1, config.max_num_grids + 1):
                for j in range(1, config.max_num_grids + 1):
                    if i == 1 and j == 1 and not config.use_1x1_grid:
                        continue
                    if i * j <= config.max_num_grids:
                        possible_resolutions.append([i, j])

            possible_resolutions = [
                [ys * vision_config.image_size, xs * vision_config.image_size] for ys, xs in possible_resolutions
            ]

        self.possible_resolutions = possible_resolutions

        with no_init_weights():
            self.vision_model = AutoModel.from_config(
                vision_config, trust_remote_code=True
            )  # weight will be loaded in from_pretrained

        assert config.language_config["model_type"] == "llama"
        language_config = CONFIG_MAPPING["llama"](**config.language_config)
        language_config._attn_implementation = kwargs.get("attn_implementation", "sdpa")  # activate flash attention
        language_config.logits_scaling = 1.0

        self.language_config = language_config
        self.language_model = AutoModelForCausalLM.from_config(language_config)

        self.language_model.gradient_checkpointing_enable()
        self.num_queries_vis_abstractor = config.num_queries_vis_abstractor

        # mm_projctor(==connector); vision_model_hidden_size -> LLM embedding size
        input_hidden_size = vision_config.hidden_size
        self.mm_projector = HCXVisionCAbstractor(
            num_queries=self.num_queries_vis_abstractor,
            num_input_tokens=(self.vision_config.image_size // self.vision_config.patch_size) ** 2,
            encoder_hidden_size=input_hidden_size,
            hidden_size=input_hidden_size,
            output_hidden_size=language_config.hidden_size,
            pos_emb=config.proj_pos_emb,
            prenorm=config.proj_prenorm,
        )
        self.use_nth_layer = config.use_nth_layer
        self.config.update({"vision_config": self.vision_model.config.to_dict()})
        self.config.update({"language_config": self.language_model.config.to_dict()})
        self.lm_head_vocab_size = (
            language_config.padded_vocab_size
            if hasattr(language_config, "padded_vocab_size")
            else language_config.vocab_size
        )
        self.language_model.lm_head = nn.Linear(language_config.hidden_size, self.lm_head_vocab_size, bias=False)
        self.model_parallel = False
        self.device_map = None
        self.use_no_grad = None
        self.decoder_max_length = config.decoder_max_length

        self.anyres = config.anyres
        self.unpad = config.unpad
        if self.anyres:
            self.image_newline = nn.Parameter(torch.empty(language_config.hidden_size, dtype=self.dtype))

        self.is_safetensor_save = kwargs.get("is_safetensor_save", True)
        self._backward_compatibility_gradient_checkpointing()

    def _init_weights(self, module):
        # copies from https://github.com/kakaobrain/honeybee/blob/main/honeybee/common_layers.py#L55
        if (
            isinstance(module, nn.Conv2d)  # noqa: SIM101
            or isinstance(module, nn.Embedding)
            or isinstance(module, nn.Linear)
        ):
            module.weight.data.normal_(mean=0.0, std=0.02)
            if hasattr(module, "bias") and module.bias is not None:
                module.bias.data.zero_()

        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, nn.Parameter):
            embed_std = 1 / torch.sqrt(torch.tensor(module.size(0), dtype=torch.float)).to(module.dtype)
            module.data.normal_(mean=0.0, std=embed_std)

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[List[List[torch.FloatTensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        image_sizes: Optional[List[List[List[int]]]] = None,
        vision_query_lengths: Optional[List[List[int]]] = None,
        non_vision_query_lengths: Optional[List[int]] = None,
        img_start_ids_list: Optional[List[List[int]]] = None,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_queries_vis_abstractors_slow: Optional[List[List[int]]] = None,
        first_last_frames_slows: Optional[List[bool]] = None,
        is_video_list: Optional[List[bool]] = None,
        **kwargs,
    ) -> Union[Tuple, HCXVisionOutput]:
        """Forward pass of the model.

        This method processes the input tokens and images, combines them into a unified
        representation, and generates text output based on the inputs.

        Args:
            input_ids: Input token IDs. In positions where images are inputted, the value is replaced by "<|dummy3|>"
            pixel_values: List of lists of 4D tensors for images. Each outer list corresponds to a batch and contains
                inner lists of image tensors.
            past_key_values: Pre-computed key and value states of the attention layers for faster inference.
            attention_mask: Mask to avoid performing attention on padding token indices.
            inputs_embeds: Input embeddings. If provided, input_ids will not be used.
            labels: Labels for computing the language modeling loss.
            use_cache: Whether to use past key/values for faster inference.
            output_attentions: Whether to return attention weights of each layer.
            output_hidden_states: Whether to return hidden states of each layer.
            return_dict: Whether to return a ModelOutput instead of a tuple.
            image_sizes: List of lists representing image dimensions (width, height).
            vision_query_lengths: List of lists containing lengths when each image is converted into visual tokens.
            non_vision_query_lengths: List of lengths of text tokens (excluding visual tokens) for each sample.
            img_start_ids_list: List of lists containing indices of img_start_id tokens for each sample.
            num_queries_vis_abstractors: List of lists containing number of visual tokens for each image grid.\
                For video frames, this is the number of visual tokens for the fast part.
            num_queries_vis_abstractors_slow: List of lists containing number of visual tokens for
                the slow part when applying the slowfast algorithm to video frames.
            first_last_frames_slows: List of booleans indicating whether the slowfast algorithm is
                applied to the first or last frames of the video.
            is_video_list: List of booleans indicating which inputs are videos.
            **kwargs: Additional keyword arguments.

        Returns:
            If return_dict=True, returns an HCXVisionOutput object containing:
                - loss: Language modeling loss if labels are provided, otherwise None.
                - loss_per_sample: Per-sample loss if labels are provided, otherwise None.
                - logits: Prediction scores of the language modeling head.
                - past_key_values: Past key/values for faster inference if use_cache=True.
                - hidden_states: Hidden states of all layers if output_hidden_states=True.
                - attentions: Attention weights of all layers if output_attentions=True.
            If return_dict=False, returns a tuple containing the above items except loss_per_sample.
        """
        output_attentions = (
            output_attentions if output_attentions is not None else self.config.vision_config["output_attentions"]
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.vision_config["output_hidden_states"]
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if inputs_embeds is None and past_key_values is None:
            inputs_embeds = self.extract_inputs_embeds(
                input_ids=input_ids,
                pixel_values=pixel_values,
                past_key_values=past_key_values,
                image_sizes=image_sizes,
                vision_query_lengths=vision_query_lengths,
                non_vision_query_lengths=non_vision_query_lengths,
                img_start_ids_list=img_start_ids_list,
                num_queries_vis_abstractors=num_queries_vis_abstractors,
                num_queries_vis_abstractors_slow=num_queries_vis_abstractors_slow,
                first_last_frames_slows=first_last_frames_slows,
                is_videos=is_video_list,
            )

        if inputs_embeds is not None:
            input_ids = None

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.language_model.base_model(
            input_ids=input_ids,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        hidden_states = hidden_states * self.language_config.logits_scaling

        loss = None
        loss_per_sample = None
        logits = self.language_model.lm_head(hidden_states)
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(reduction="none")  # ignore IGNORE_INDEX(-100)
            shift_logits = shift_logits.view(-1, self.lm_head_vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model/pipeline parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)
            if get_rank() == 0:
                loss_per_sample = loss.view(logits.shape[0], -1).sum(axis=1) / (
                    shift_labels.view(logits.shape[0], -1) != self.config.ignore_index
                ).sum(axis=1)
            loss = loss[shift_labels != self.config.ignore_index].mean()
        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return HCXVisionOutput(
            loss=loss,
            loss_per_sample=loss_per_sample,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def determine_non_vision_query_lengths(
        self, input_ids: torch.LongTensor, pad_id: int, img_start_id: int
    ) -> List[int]:
        """Calculate the lengths of non-vision query parts in the input.

        This method calculates the length of text tokens (excluding visual tokens) for each sample.
        When input_ids are collated, they are padded with pad_id on the right, so this method finds
        these values by identifying pad tokens and img_start_id tokens.

        Args:
            input_ids: Input token IDs with img_start_id markers for image positions.
            pad_id: Token ID used for padding.
            img_start_id: Token ID marking the start of image data.

        Returns:
            List of lengths of non-vision query parts for each sample in the batch.
        """
        non_vision_query_lengths = []
        batch_size, len_seq = input_ids.size(0), input_ids.size(1)

        for i in range(batch_size):
            temp_idx = (input_ids[i] == pad_id).nonzero()
            eos_idx = temp_idx[0, 0].item() if len(temp_idx) > 0 else len_seq
            num_imgs = (input_ids[i] == img_start_id).sum().item()
            non_vision_query_lengths.append(eos_idx - num_imgs)

        if all([pad_id in input_id for input_id in input_ids.tolist()]):
            non_vision_query_lengths = [
                non_vision_query_length + 1 for non_vision_query_length in non_vision_query_lengths
            ]

        return non_vision_query_lengths

    def determine_vision_query_lengths(
        self, image_features: List[List[torch.Tensor]], image_cnts: List[int]
    ) -> List[List[int]]:
        """Calculate the lengths of vision query parts in the input.

        This method calculates the lengths of visual tokens for each image in each sample based on
        the shapes of image feature tensors. For samples without any images, a dummy image is included
        but then converted to an empty list.

        Args:
            image_features: List of lists of image features tensors.
            image_cnts: List of counts of images for each sample in the batch.

        Returns:
            List of lists of lengths of visual tokens for each image in each sample.
        """
        vision_query_lengths = [
            [image_feature.size(0) for image_feature in image_feature_list] for image_feature_list in image_features
        ]

        for i, image_cnt in enumerate(image_cnts):
            if image_cnt == 0:
                assert len(vision_query_lengths[i]) == 1  # 현재 검정 이미지 1개 들어가있음
                vision_query_lengths[i] = []  # 빈 list 로 변환

        return vision_query_lengths

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
    def set_input_embeddings(self, value):
        self.language_model.set_input_embeddings(value)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
    def set_output_embeddings(self, new_embeddings):
        self.language_model.set_output_embeddings(new_embeddings)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
    def set_decoder(self, decoder):
        self.language_model.set_decoder(decoder)

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
    def get_decoder(self):
        return self.language_model.get_decoder()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.tie_weights
    def tie_weights(self):
        return self.language_model.tie_weights()

    # Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.resize_token_embeddings
    def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
        model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
        self.config.text_config.vocab_size = model_embeds.num_embeddings
        self.vocab_size = model_embeds.num_embeddings
        return model_embeds

    def extract_inputs_embeds(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[List[List[torch.FloatTensor]]] = None,  # list of list of 4D tensors
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        image_sizes: Optional[List[List[List[int]]]] = None,
        vision_query_lengths: Optional[List[List[int]]] = None,
        non_vision_query_lengths: Optional[List[int]] = None,
        img_start_ids_list: Optional[List[List[int]]] = None,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_queries_vis_abstractors_slow: Optional[List[List[int]]] = None,
        first_last_frames_slows: Optional[List[bool]] = None,
        is_videos: Optional[List[str]] = None,
    ):
        """Extract input embeddings by processing text tokens and visual features.

        This method processes the input tokens and image features, extracts the visual features
        using the vision model, and combines them with the text token embeddings to create
        a unified input representation for the language model.

        Args:
            input_ids: Input token IDs with img_start_id markers for image positions.
            pixel_values: List of lists of image tensors.
            past_key_values: Pre-computed key and value states for faster inference.
            image_sizes: List of lists of image dimensions (width, height).
            vision_query_lengths: List of lists of lengths when each image is converted to visual tokens.
            non_vision_query_lengths: List of lengths of text tokens (excluding visual tokens) for each sample.
            img_start_ids_list: List of lists containing indices of img_start_id tokens for each sample.
            num_queries_vis_abstractors: List of lists containing number of visual tokens for each image grid.
            num_queries_vis_abstractors_slow: List of lists containing number of visual tokens for
                the slow part when applying the slowfast algorithm to video frames.
            first_last_frames_slows: List of booleans indicating whether the slowfast algorithm is
                applied to the first or last frames of the video.
            is_videos: List of booleans indicating which inputs are videos.

        Returns:
            Combined embeddings of text tokens and visual features.
        """
        inputs_embeds = None
        if past_key_values:
            pass
        else:
            # Flatten CLIP and connector for feature encoding, then convert back to List of List format
            len_pixel_values = [len(pixel_value) for pixel_value in pixel_values]
            concat_pixel_values = torch.cat(list(chain(*pixel_values)), dim=0)  # list of list of 4D Tensor
            visual_token_idx = 0 if "siglip" in self.vision_config.model_type else 1
            # Check if all parameters of the model require_grad=False
            if self.use_no_grad is None:
                self.use_no_grad = all(not p.requires_grad for p in self.vision_model.vision_model.encoder.parameters())
            context = torch.no_grad() if self.use_no_grad else contextlib.nullcontext()
            with context:
                if self.use_no_grad:
                    # Fixed number of for-loop iterations to 10.
                    # Currently no memory effect observed, so proceeding without chunking.
                    n_chunks = 1
                else:
                    n_chunks = 1
                total_len = concat_pixel_values.size(0)
                # Calculate the size of each chunk based on total data length (divided into 10 chunks)
                chunk_size = math.ceil(total_len / n_chunks) if total_len > 0 else 1
                image_forward_outs_chunks = []

                for i in range(n_chunks):
                    start = i * chunk_size
                    end = (i + 1) * chunk_size
                    # Current chunk slice (could be an empty tensor if there's no data)
                    chunk = concat_pixel_values[start:end].to(self.vision_model.dtype)
                    # If the current chunk size is smaller than chunk_size, pad with dummy data
                    if chunk.size(0) < chunk_size:
                        # print(f"chunk.size(0): {chunk.size(0)}, chunk_size: {chunk_size}")
                        pad_size = chunk_size - chunk.size(0)
                        # Create dummy tensor based on concat_pixel_values shape
                        dummy_shape = (pad_size,) + tuple(concat_pixel_values.shape[1:])
                        dummy = torch.zeros(
                            dummy_shape,
                            dtype=concat_pixel_values.dtype,
                            device=concat_pixel_values.device,
                        )
                        chunk = torch.cat([chunk, dummy], dim=0)

                    # Pass the chunk through the vision model (processed according to use_nth_layer)
                    if self.use_nth_layer == -1:
                        # Replace post_layernorm of the last layer with Identity
                        self.vision_model.vision_model.post_layernorm = nn.Identity()
                        outs = self.vision_model(chunk)
                        outs = outs.last_hidden_state[:, visual_token_idx:]
                    else:
                        outs = self.vision_model(chunk, output_hidden_states=True)
                        outs = outs.hidden_states[self.use_nth_layer][:, visual_token_idx:]
                    image_forward_outs_chunks.append(outs)

                # Concatenate results from all chunks
                image_forward_outs = torch.cat(image_forward_outs_chunks, dim=0).to(image_forward_outs_chunks[0].dtype)

            if num_queries_vis_abstractors is None:
                assert num_queries_vis_abstractors_slow is None
                image_sizes = list(chain(*image_sizes))
                if is_videos is not None:
                    is_videos = list(chain(*is_videos))
                group_ids = None
                image_forward_outs = image_forward_outs.to(dtype=self.mm_projector.dtype)
                image_forward_outs = self.mm_projector(image_forward_outs)
            else:
                # adaptive anyres is only implemented in HCXVisionCAbstractor
                assert isinstance(self.mm_projector, HCXVisionCAbstractor)

                (
                    num_queries_vis_abstractors,
                    num_grids,
                    image_sizes,
                    is_videos,
                    group_ids,
                ) = self.compute_adaptive_params(
                    pixel_values,
                    num_queries_vis_abstractors,
                    num_queries_vis_abstractors_slow,
                    image_sizes,
                    is_videos,
                    first_last_frames_slows,
                )

                image_forward_outs = image_forward_outs.to(dtype=self.mm_projector.dtype)
                image_forward_outs = self.mm_projector(
                    image_forward_outs,
                    num_queries_vis_abstractors=num_queries_vis_abstractors,
                    num_grids=num_grids,
                )

            if self.anyres:
                split_sizes = [pixel_value.shape[0] for pixel_value in chain(*pixel_values)]

                if num_queries_vis_abstractors is None:
                    image_features = anyres_postprocessing(
                        image_forward_outs=image_forward_outs,
                        split_sizes=split_sizes,
                        image_sizes=image_sizes,
                        num_queries_vis_abstractor=self.num_queries_vis_abstractor,
                        unpad=self.unpad,
                        is_videos=is_videos,
                        patch_size=self.vision_model.config.patch_size,
                        grid_size=self.vision_model.config.image_size,
                        image_newline=self.image_newline,
                        possible_resolutions=self.possible_resolutions,
                    )
                else:
                    image_features = adaptive_anyres_postprocessing(
                        image_forward_outs=image_forward_outs,
                        image_sizes=image_sizes,
                        num_queries_vis_abstractors=num_queries_vis_abstractors,
                        unpad=self.unpad,
                        is_videos=is_videos,
                        grid_size=self.vision_model.config.image_size,
                        image_newline=self.image_newline,
                        possible_resolutions=self.possible_resolutions,
                        group_ids=group_ids,
                    )
            else:
                if num_queries_vis_abstractors is None:
                    image_features = [image_forward_out for image_forward_out in image_forward_outs]
                else:
                    image_features = [image_forward_out.unsqueeze(0) for image_forward_out in image_forward_outs]

            # print(f"BEFORE GROUPING: len(image_features): {len(image_features)}")
            image_features = [
                image_features[sum(len_pixel_values[:i]) : sum(len_pixel_values[: i + 1])]
                for i in range(len(len_pixel_values))
            ]

            batch_size = input_ids.size(0)
            image_feature_dim = image_features[0][0].size(1)
            image_feature_dtype = image_features[0][0].dtype

            if img_start_ids_list is None:
                image_cnts = (input_ids == self.config.img_start_id).sum(dim=1).tolist()
            else:
                image_cnts = [len(img_start_ids) for img_start_ids in img_start_ids_list]

            if non_vision_query_lengths is None:
                non_vision_query_lengths = self.determine_non_vision_query_lengths(
                    input_ids, self.tokenizer.pad_token_id, self.config.img_start_id
                )

            if vision_query_lengths is None:
                vision_query_lengths = self.determine_vision_query_lengths(image_features, image_cnts)

            # Slicing is faster than concatenation
            len_inputs_embeds = max(
                [
                    sum(vision_query_length) + non_vision_query_length
                    for non_vision_query_length, vision_query_length in zip(
                        non_vision_query_lengths, vision_query_lengths
                    )
                ]
            )
            len_inputs_embeds = min(self.decoder_max_length, len_inputs_embeds)

            inputs_embeds = torch.zeros(
                [batch_size, len_inputs_embeds, image_feature_dim],
                dtype=image_feature_dtype,
                device=self.device,
                requires_grad=True,
            ).clone()
            # temp_embeds : torch.bfloat16 : [batchsize, 174, 3072]
            temp_embeds = self.get_input_embeddings()(input_ids)

            # The complete format is <PROMPT><USER_PREFIX><VISION_QUERIES>Sentence
            for batch_idx, sample in enumerate(input_ids):
                # Concatenate with visual tokens and then slice
                non_vision_query_length = non_vision_query_lengths[batch_idx]
                # Safely concatenate with visual tokens and then slice
                sample = sample[: non_vision_query_length + image_cnts[batch_idx]]

                if image_cnts[batch_idx] == 0:  # Text instruction data doesn't insert image features
                    temp_idx = 0
                    # Reference: https://github.com/haotian-liu/LLaVA/commit/44e0562f9497fb79f042427307472a87d266d90a#diff-4477387d506ccb1897a13972cba26c9da3fad4d3e1c32ec4b8bd8ff7acd3f292
                    # https://github.com/intel/intel-extension-for-transformers/issues/1201#issuecomment-1915875119
                    inputs_embeds[batch_idx, :non_vision_query_length] = temp_embeds[batch_idx][
                        :non_vision_query_length
                    ]
                    inputs_embeds[batch_idx, temp_idx:temp_idx] = image_features[batch_idx][0][
                        0:0
                    ]  # First image of batch_idx sample (dummy image)
                else:
                    if img_start_ids_list is None:
                        img_start_ids = (sample == self.config.img_start_id).nonzero()
                    else:
                        img_start_ids = img_start_ids_list[batch_idx]
                    assert len(img_start_ids) == image_cnts[batch_idx] == len(image_features[batch_idx])
                    # Initialize starting points for input embeddings and temporary embeddings
                    input_start, temp_start = 0, 0

                    # Iterate through each image starting point in the batch
                    for multi_img_idx, img_start_idx in enumerate(img_start_ids):
                        # Calculate token length up to the current image starting point
                        token_len = img_start_idx - temp_start

                        # Copy tokens to inputs_embeds
                        inputs_embeds[batch_idx, input_start : input_start + token_len] = temp_embeds[
                            batch_idx, temp_start : temp_start + token_len
                        ]

                        inputs_embeds[
                            batch_idx,
                            input_start
                            + token_len : input_start
                            + token_len
                            + vision_query_lengths[batch_idx][multi_img_idx],
                        ] = image_features[batch_idx][multi_img_idx]

                        # Update starting points for next token processing
                        input_start += token_len + vision_query_lengths[batch_idx][multi_img_idx]
                        temp_start += token_len + 1  # Increase by 1 to skip the image start token

                    # Process tokens after the last image end token
                    token_len = min(sample[temp_start:].size(0), inputs_embeds.size(1) - input_start)
                    inputs_embeds[batch_idx, input_start : input_start + token_len] = temp_embeds[
                        batch_idx, temp_start : temp_start + token_len
                    ]
        return inputs_embeds

    @torch.no_grad()
    def generate(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values: Optional[List[List[torch.FloatTensor]]] = None,
        image_sizes: Optional[List[List[List[int]]]] = None,
        vision_query_lengths: Optional[List[List[int]]] = None,
        non_vision_query_lengths: Optional[List[int]] = None,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_queries_vis_abstractors_slow: Optional[List[List[int]]] = None,
        first_last_frames_slows: Optional[List[bool]] = None,
        is_videos: Optional[List[bool]] = None,
        img_start_ids_list: Optional[List[List[int]]] = None,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[int] = None,
        bad_words_ids: Optional[List[List[int]]] = None,
        max_length: int = 196,
        min_length: int = 2,
        do_sample: bool = True,
        num_beams: int = 1,
        top_p: float = 0.6,
        top_k: int = 0,
        temperature: float = 0.5,
        repetition_penalty: float = 1.0,
        length_penalty: int = 1,
        use_cache: bool = True,
        **kwargs,
    ) -> torch.LongTensor:
        """Generate text based on input tokens and images.

        This method generates text based on the provided input tokens and images using
        beam search and/or sampling strategies.

        Args:
            input_ids: Input token IDs with img_start_id markers for image positions.
            pixel_values: List of lists of image tensors.
            image_sizes: List of lists of image dimensions (width, height).
            vision_query_lengths: List of lists of lengths when each image is converted to visual tokens.
            non_vision_query_lengths: List of lengths of text tokens (excluding visual tokens) for each sample.
            num_queries_vis_abstractors: List of lists containing number of visual tokens for each image grid.
            num_queries_vis_abstractors_slow: List of lists containing number of visual tokens for the slow part when
                applying the slowfast algorithm to video frames.
            first_last_frames_slows: List of booleans indicating whether the slowfast algorithm is applied to the first
                or last frames of the video.
            is_videos: List of booleans indicating which inputs are videos.
            img_start_ids_list: List of lists containing indices of img_start_id tokens for each sample.
            pad_token_id: Token ID used for padding.
            eos_token_id: Token ID used to signal the end of a sequence.
            bad_words_ids: List of token ID sequences that should not be generated.
            max_length: Maximum length of the sequence to be generated (input length + max_new_tokens).
            min_length: Minimum length of the sequence to be generated (input length + min_new_tokens).
            do_sample: Whether to use sampling for generation (otherwise uses greedy decoding).
            num_beams: Number of beams for beam search. 1 means no beam search.
            top_p: Nucleus sampling parameter. Tokens with cumulative probability > top_p are kept.
            top_k: Number of highest probability tokens to keep for top-k-filtering.
            temperature: Value used to modulate the next token probabilities.
            repetition_penalty: Penalty applied to tokens that have already appeared in the sequence.
            length_penalty: Exponential penalty applied to sequence length.
            use_cache: Whether to use past key/values for faster inference.
            **kwargs: Additional keyword arguments.

        Returns:
            Generated token IDs.
        """
        # inputs_embeds: torch.bfloat16 : [batchsize, variable(visual token, text token, system prompt 모두 포함)]
        if pad_token_id is None:
            pad_token_id = self.tokenizer.pad_token_id
        if eos_token_id is None:
            eos_token_id = self.tokenizer.encode("<|endofturn|>")[0]
        if bad_words_ids is None:
            bad_words_ids = [
                [
                    self.config.language_config["bos_token_id"],
                ],
                [
                    self.config.language_config["eos_token_id"],
                ],
            ]

        if pixel_values is None:
            return self.language_model.generate(
                input_ids, pad_token_id=pad_token_id, eos_token_id=eos_token_id, bad_words_ids=bad_words_ids, **kwargs
            )
        inputs_embeds = self.extract_inputs_embeds(
            input_ids=input_ids,
            pixel_values=self.to_vision_model_device(pixel_values),
            image_sizes=image_sizes,
            vision_query_lengths=vision_query_lengths,
            non_vision_query_lengths=non_vision_query_lengths,
            img_start_ids_list=img_start_ids_list,
            num_queries_vis_abstractors=num_queries_vis_abstractors,
            num_queries_vis_abstractors_slow=num_queries_vis_abstractors_slow,
            first_last_frames_slows=first_last_frames_slows,
            is_videos=is_videos,
        )
        inputs_embeds = (
            inputs_embeds.to(self.base_model.device) if isinstance(inputs_embeds, torch.Tensor) else inputs_embeds
        )

        # pred : torch.int64 : [batchsize, generated token_length]
        pred = self.language_model.generate(
            inputs_embeds=inputs_embeds,
            pad_token_id=pad_token_id,
            eos_token_id=eos_token_id,
            bad_words_ids=bad_words_ids,
            max_length=max_length,
            min_length=min_length,
            num_beams=num_beams,
            do_sample=(False if temperature == 0.0 else do_sample),  # set do_sample=False if invalid temperature
            top_k=top_k,
            top_p=top_p,
            temperature=temperature,
            repetition_penalty=repetition_penalty,
            length_penalty=length_penalty,
            early_stopping=(False if num_beams <= 1 else True),  # set early_stopping=False when not beam_search
            use_cache=use_cache,
            **kwargs,
        )

        return pred

    def to_vision_model_device(self, input_tensor: Union[torch.Tensor, List]) -> Union[torch.Tensor, List]:
        """Move input tensors to the vision model's device.
        This method recursively moves input tensors or lists of tensors to the vision model's device.

        Args:
            input_tensor: Input tensor or list of tensors to be moved to the vision model's device.

        Returns:
            The input tensor or list of tensors moved to the vision model's device.

        Raises:
            TypeError: If the input is neither a tensor nor a list.
        """
        if isinstance(input_tensor, list):
            return [self.to_vision_model_device(item) for item in input_tensor]
        elif isinstance(input_tensor, torch.Tensor):
            return input_tensor.to(self.vision_model.device)
        else:
            raise TypeError("Unsupported data type. Only tensors and lists are allowed.")

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        """Prepare inputs for the generation algorithm.

        This method prepares the input for each generation step based on the model's needs.

        Args:
            input_ids: Input token IDs.
            past_key_values: Pre-computed key and value states for faster inference.
            attention_mask: Mask to avoid performing attention on padding token indices.
            inputs_embeds: Input embeddings. If provided, input_ids will not be used.
            **kwargs: Additional keyword arguments.

        Returns:
            Dictionary containing the prepared inputs for the model.
        """
        input_ids = kwargs.get("decoder_input_ids", input_ids)

        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "pixel_values": kwargs.get("pixel_values", None),
            }
        )
        return model_inputs

    @classmethod
    def from_config(cls, config, vision_model_name_or_path):
        return cls(config, vision_model_name_or_path)

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Optional[Union[str, os.PathLike]] = None,
        *model_args,
        **kwargs,
    ) -> "HCXVisionForCausalLM":
        assert pretrained_model_name_or_path is not None

        save_only_vision = kwargs.pop("save_only_vision") if "save_only_vision" in kwargs else False
        save_only_qformer = kwargs.pop("save_only_qformer") if "save_only_qformer" in kwargs else False
        save_shard_size = kwargs.pop("save_shard_size") if "save_shard_size" in kwargs else "5GB"

        if pretrained_model_name_or_path is not None:  # when evaluate or load instruction tunned model
            model: HCXVisionForCausalLM = super().from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs)
            model.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)

        img_start_id = model.tokenizer.encode(IMG_LOC, add_special_tokens=False)
        assert (
            len(img_start_id) == 1
        ), f'"<|dummy3|>" was not encoded into a single special token. Encoding result: {img_start_id}'
        model.config.img_start_id = img_start_id[0]

        model.save_only_vision = save_only_vision
        model.save_only_qformer = save_only_qformer
        model.save_shard_size = save_shard_size

        return model

    def get_language_model(self):
        return self.language_model.base_model

    def get_vision_model(self):
        return self.vision_model

    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
        *args,
        **kwargs,
    ):
        state_dict = kwargs["state_dict"] if "state_dict" in kwargs else self.state_dict()
        partial_state_dict = self.get_pretrained_state_dict(
            state_dict,
            save_directory,
        )
        kwargs["state_dict"] = partial_state_dict
        kwargs["safe_serialization"] = self.is_safetensor_save
        kwargs.setdefault("max_shard_size", self.save_shard_size)
        super().save_pretrained(save_directory, *args, **kwargs)

    def get_pretrained_state_dict(self, state_dict, save_dir):
        vision_key = "vision_model."
        llm_keys = ["language_model."]
        head_key = "lm_head."

        for key in list(state_dict.keys()):
            if self.save_only_vision:
                for llm_key in llm_keys:
                    if llm_key in key:
                        state_dict.pop(key)
                if key.startswith(head_key):
                    state_dict.pop(key)

                elif self.save_only_qformer:
                    if f"{vision_key}" in key:
                        state_dict.pop(key)

        return state_dict

    def compute_adaptive_params(
        self,
        pixel_values: Optional[List[List[torch.FloatTensor]]] = None,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_queries_vis_abstractors_slow: Optional[List[List[int]]] = None,
        image_sizes: Optional[List[List[List[int]]]] = None,
        is_videos: Optional[List[bool]] = None,
        first_last_frames_slows: Optional[List[bool]] = None,
    ) -> Tuple[List[int], List[int], List[List[int]], List[bool], List[List[int]]]:
        """Compute adaptive parameters for processing different image and video inputs.

        This method calculates parameters needed for adaptive processing, especially when handling
        variable resolutions or applying the slowfast algorithm to video frames. It flattens
        batch-level inputs (lists of lists) into single lists representing all images/frames
        in the batch. Based on slowfast configuration, it may split video frames into 'slow'
        and 'fast' components, adjusting query counts and grid indices accordingly.

        Args:
            pixel_values: List of lists of image tensors (per sample). Used to determine the initial number of grids per
                image/frame.
            num_queries_vis_abstractors: List of lists (per sample) containing the base number of visual tokens
                generated by the visual abstractor for each image grid
                (e.g., 81 for a full grid, 9 for a subsampled/fast grid).
            num_queries_vis_abstractors_slow: List of lists (per sample) containing the number of visual tokens for the
                'slow' path when applying slowfast. Non-zero values here trigger the slowfast processing logic.
            image_sizes: List of lists (per sample) of original image dimensions ([width, height]).
            is_videos: List of lists (per sample) of booleans indicating if each input item is part of a video sequence.
            first_last_frames_slows: List (per sample) of booleans. If True, slowfast logic
                (if active based on `num_queries_vis_abstractors_slow`) is applied only to the first or last frame(s)
                within each video sequence.

        Returns:
            Tuple containing:
                - num_queries_vis_abstractors: Flattened list of final query counts per processed grid.
                  Values might be adjusted based on slow/fast splitting
                  (e.g., using values from `num_queries_vis_abstractors_slow` for slow frames).
                  Example: [81, 81, 81, 9, 81, 9, ...] (Image, Image, Vid_Slow, Vid_Fast, Vid_Slow, Vid_Fast...)
                - num_grids: Flattened list representing cumulative grid counts, acting as end indices for slicing the
                  flattened `image_forward_outs`. Adjusted for slow/fast splits.
                  Example: [0, 1, 9, 10, 18, 19, 27, ...] (Indices after Grid0_Slow(1),
                  Grid1_Fast(8), Grid2_Slow(1), Grid3_Fast(8)...).
                - image_sizes: Flattened list of image dimensions ([width, height]), potentially duplicated if slow/fast
                  splitting occurred.
                - is_videos: Flattened list of booleans indicating video status, potentially duplicated for
                  slow/fast splits. Example: [False, False, True, True, True, True, ...]
                  (Image1, Image2, Vid_grid1_slow, Vid_grid1_fast, Vid_grid2_slow, Vid_grid2_fast...)
                - group_ids: List of lists, grouping indices that correspond to the same original image or frame.
                  If a frame is split into slow/fast, its group will contain multiple indices.
                  Example: [[0], [1], [2, 3], [4, 5], ...]
                  (Group for Image1, Group for Image2, Group for Vid1_Slow+Fast, Group for Vid2_Slow+Fast...).

        Raises:
            AssertionError: If input validation fails (e.g., negative query counts).
            Exception: If an unexpected case is encountered during slowfast processing.
        """

        # Check if all elements are integers greater than or equal to 0
        assert all(
            all(isinstance(value, int) and value >= 0 for value in sublist) for sublist in num_queries_vis_abstractors
        ), "All values in num_queries_vis_abstractors must be integers >= 0."

        assert all(
            all(isinstance(value, int) and value >= 0 for value in sublist)
            for sublist in num_queries_vis_abstractors_slow
        ), "All values in num_queries_vis_abstractors_slow must be integers >= 0."

        assert is_videos is not None

        # Is it the first or last image? (for applying slowfast to video processing)
        is_first_images = []
        is_last_images = []
        for is_video in is_videos:
            for idx, is_video_item in enumerate(is_video):
                if idx == 0:
                    is_first_images.append(True)
                else:
                    is_first_images.append(False)
                if idx == len(is_video) - 1:
                    is_last_images.append(True)
                else:
                    is_last_images.append(False)

        num_queries_vis_abstractors = list(chain(*num_queries_vis_abstractors))
        num_queries_vis_abstractors_slow = list(chain(*num_queries_vis_abstractors_slow))
        image_sizes = list(chain(*image_sizes))
        is_videos = list(chain(*is_videos))
        first_last_frames_slows = list(chain(*first_last_frames_slows))

        # Use slowfast mode if there's at least one visual token count greater than 0 in num_queries_vis_abstractors_slow
        use_slowfast = any([num_query > 0 for num_query in num_queries_vis_abstractors_slow])
        num_grids = [pixel_value.shape[0] for pixel_value in chain(*pixel_values)]
        num_grids = [0] + num_grids
        group_ids = []

        if use_slowfast:
            new_num_grids = [num_grids[0]]
            new_num_queries = []
            new_image_sizes = []
            new_is_videos = []

            # When using slowfast, split more finely
            # 0th local grid is slow frame, remaining local grids are fast frames
            for (
                num_query,
                num_query_slow,
                num_grid,
                image_size,
                is_video,
                first_last_frames_slow,
                is_first_image,
                is_last_image,
            ) in zip(
                num_queries_vis_abstractors,
                num_queries_vis_abstractors_slow,
                num_grids[1:],
                image_sizes,
                is_videos,
                first_last_frames_slows,
                is_first_images,
                is_last_images,
            ):

                if not first_last_frames_slow and num_query_slow > 0:  # Process all image in slowfast mode
                    assert is_video  # slowfast mode is only applied to videos

                    this_group_ids = [group_ids[-1][-1] + 1 if group_ids else 0]

                    # slow frame (first grid)
                    new_num_grids.append(new_num_grids[-1] + 1)
                    new_num_queries.append(num_query_slow)
                    new_image_sizes.append(image_size)
                    new_is_videos.append(is_video)

                    if num_grid >= 2:
                        # fast frames
                        new_num_grids.append(new_num_grids[-1] + num_grid - 1)
                        new_num_queries.append(num_query)
                        new_image_sizes.append(image_size)
                        new_is_videos.append(is_video)
                        this_group_ids.append(this_group_ids[-1] + 1)

                    group_ids.append(this_group_ids)
                elif (
                    first_last_frames_slow and num_query_slow > 0 and (is_first_image or is_last_image)
                ):  # Process only first/last image in slowfast mode
                    # Case for special treatment of first/last frames in slow mode
                    assert is_video  # slowfast mode is only applied to videos

                    this_group_ids = [group_ids[-1][-1] + 1 if group_ids else 0]

                    if num_grid == 1:
                        # Simply process with slow since there's only one grid
                        new_num_grids.append(new_num_grids[-1] + 1)
                        new_num_queries.append(num_query_slow)
                        new_image_sizes.append(image_size)
                        new_is_videos.append(is_video)

                    if num_grid >= 2:
                        # Special treatment for first or last grid depending on is_first_image or is_last_image

                        if is_first_image:  # includes both first and last
                            # slow frame (first grid)
                            new_num_grids.append(new_num_grids[-1] + 1)
                            new_num_queries.append(num_query_slow)
                            new_image_sizes.append(image_size)
                            new_is_videos.append(is_video)
                            # fast frames
                            new_num_grids.append(new_num_grids[-1] + num_grid - 1)
                            new_num_queries.append(num_query)
                            new_image_sizes.append(image_size)
                            new_is_videos.append(is_video)
                            this_group_ids.append(this_group_ids[-1] + 1)
                        elif is_last_image:
                            # fast frames
                            new_num_grids.append(new_num_grids[-1] + num_grid - 1)
                            new_num_queries.append(num_query)
                            new_image_sizes.append(image_size)
                            new_is_videos.append(is_video)
                            # slow frame (last grid)
                            new_num_grids.append(new_num_grids[-1] + 1)
                            new_num_queries.append(num_query_slow)
                            new_image_sizes.append(image_size)
                            new_is_videos.append(is_video)
                            this_group_ids.append(this_group_ids[-1] + 1)
                        else:
                            raise Exception("This case should not be reached.")
                    group_ids.append(this_group_ids)
                else:
                    # Not in slowfast mode, so reduce all by num_query (fast)
                    new_num_grids.append(new_num_grids[-1] + num_grid)
                    new_num_queries.append(num_query)
                    new_image_sizes.append(image_size)
                    new_is_videos.append(is_video)

                    start_group_id = group_ids[-1][-1] + 1 if group_ids else 0
                    group_ids.append([start_group_id])

            num_grids = new_num_grids
            num_queries_vis_abstractors = new_num_queries
            image_sizes = new_image_sizes
            is_videos = new_is_videos
        else:
            num_grids = [sum(num_grids[:i]) for i in range(1, len(num_grids) + 1)]
            group_ids = [[group_id] for group_id in range(len(is_videos))]

        return num_queries_vis_abstractors, num_grids, image_sizes, is_videos, group_ids


class HCXVisionCAbstractor(nn.Module):
    """
    This module is based on C-Abstractor, whose license is under apache-2.0.
    You can check the original code at https://github.com/khanrc/honeybee/blob/main/honeybee/projectors/projectors.py
    and we made necessary modifications.
    """

    def __init__(
        self,
        num_queries: int,
        num_input_tokens: int,
        encoder_hidden_size: int,
        hidden_size: int,
        output_hidden_size: int,
        pos_emb: bool = True,
        prenorm: bool = False,
    ):
        super().__init__()
        self.num_input_tokens = num_input_tokens
        self.output_hidden_size = output_hidden_size

        # Positional embedding
        if pos_emb:
            self.pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, encoder_hidden_size))
            self.pos_emb.data.normal_(mean=0.0, std=0.02)
        else:
            self.pos_emb = None

        # (Optional) Pre-normalization layer
        if prenorm:
            self.prenorm = LayerNorm(encoder_hidden_size)
        else:
            self.prenorm = None

        self.build_net(num_queries, encoder_hidden_size, hidden_size, output_hidden_size)
        self.dtype = next(self.parameters()).dtype

    def forward(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_grids: Optional[List[int]] = None,
    ) -> torch.Tensor:
        """
        Args:
            x: (B, L, encoder_hidden_size) tensor from the visual backbone (e.g. CLIP visual encoder), including cls token.
        """
        if self.prenorm is not None:
            x = self.prenorm(x)

        if self.pos_emb is not None:
            x = x + self.pos_emb

        x = self._forward(
            x,
            num_queries_vis_abstractors=num_queries_vis_abstractors,
            num_grids=num_grids,
        )  # (B, L, output_hidden_size)

        return x

    def _forward(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_grids: Optional[List[int]] = None,
    ) -> torch.Tensor:
        # x: [B, L, dim]
        B, L, dim = x.shape
        hw = int(L ** 0.5)
        x = rearrange(x, "b (h w) d -> b d h w", h=hw, w=hw)

        if num_queries_vis_abstractors is not None:
            assert num_grids is not None
            return self._forward_adaptive_num_query(x, num_queries_vis_abstractors, num_grids)

        x = self.net(x)
        x = rearrange(x, "b d h w -> b (h w) d")
        x = self.readout(x)
        return x

    def _forward_adaptive_num_query(
        self,
        x: torch.Tensor,
        num_queries_vis_abstractors: Optional[List[List[int]]] = None,
        num_grids: Optional[List[int]] = None,
    ) -> List[torch.Tensor]:
        # self.net is consisted by 3 layers (s1, sampler, s2)
        assert len(self.net) == 3

        x = self.net[0](x)  # s1
        new_x = []
        for i, num_queries in enumerate(num_queries_vis_abstractors):
            hw = int(num_queries**0.5)
            sampler = nn.AdaptiveAvgPool2d((hw, hw))
            out = sampler(x[num_grids[i]:num_grids[i + 1], :])
            out = self.net[2](out)  # s2

            out = rearrange(out, "b d h w -> b (h w) d")
            out = self.readout(out)

            new_x.append(out)
        return new_x

    def build_net(
        self,
        n_queries: int,
        encoder_hidden_size: int,
        hidden_size: int,
        output_hidden_size: int,
        depth: int = 3,
        mlp_depth: int = 2,
    ):
        assert (n_queries ** 0.5).is_integer(), f"n_queries must be square number. n_queries: {n_queries}"
        hw = int(n_queries ** 0.5)

        # RegBlock = ResBlock + SE
        RegBlock = partial(
            RegStage,
            stride=1,
            dilation=1,
            act_layer=nn.SiLU,
            norm_layer=LayerNorm2d,
        )

        s1 = RegBlock(
            depth,
            encoder_hidden_size,
            hidden_size,
        )
        sampler = nn.AdaptiveAvgPool2d((hw, hw))
        s2 = RegBlock(
            depth,
            hidden_size,
            hidden_size,
        )

        self.net = nn.Sequential(s1, sampler, s2)
        self.readout = self.build_mlp(mlp_depth, hidden_size, output_hidden_size)

    def build_mlp(
        self,
        depth: int,
        hidden_size: int,
        output_hidden_size: int,
    ):
        layers = [nn.Linear(hidden_size, output_hidden_size)]
        for _ in range(1, depth):
            layers.append(nn.SiLU())
            layers.append(nn.Linear(output_hidden_size, output_hidden_size))
        return nn.Sequential(*layers)

def load_sharded_checkpoint(
    model, folder, pick_prefix="", replace_prefix_list=[], replace_prefix_dict={}, print_info=True
):
    if folder is None:
        return {}

    files = os.listdir(folder)

    # find relevant files
    pytorch_bin_files = [file for file in files if file.startswith("pytorch_model") and file.endswith(".bin")]
    safetensor_files = [file for file in files if file.endswith(".safetensors")]
    shard_index_file = [file for file in files if file.endswith(".index.json")]

    # check if sharded
    index_present = len(shard_index_file) > 0
    index_file = os.path.join(folder, shard_index_file[0]) if index_present else []

    # check if safetensor
    is_safetensor = len(safetensor_files) > 0

    model_keys = model.state_dict().keys()

    if is_safetensor:
        from safetensors.torch import load_file

        load_function = load_file
        shard_files = safetensor_files
    else:
        load_function = partial(torch.load, map_location="cpu")
        shard_files = pytorch_bin_files

    # sharded case
    if index_present:
        with open(index_file, "r", encoding="utf-8") as f:
            index = json.load(f)
        loaded_keys = index["weight_map"].keys()
        if pick_prefix:
            loaded_keys = [k[len(pick_prefix) :] for k in loaded_keys if k.startswith(pick_prefix)]
        if replace_prefix_list:
            for rep_prefix in replace_prefix_list:
                loaded_keys = [k[len(rep_prefix) :] if k.startswith(rep_prefix) else k for k in loaded_keys]
        if replace_prefix_dict:
            for rep_prefix in replace_prefix_dict:
                loaded_keys = [
                    k.replace(rep_prefix, replace_prefix_dict[rep_prefix]) if k.startswith(rep_prefix) else k
                    for k in loaded_keys
                ]

    for i, shard_file in enumerate(shard_files):
        state_dict = load_function(os.path.join(folder, shard_file))

        # if pick_prefix, use only pick
        if pick_prefix:
            state_dict = {k[len(pick_prefix) :]: v for k, v in state_dict.items() if k.startswith(pick_prefix)}

        for rep_prefix in replace_prefix_list:
            state_dict = {k[len(rep_prefix) :] if k.startswith(rep_prefix) else k: v for k, v in state_dict.items()}

        for rep_prefix in replace_prefix_dict:
            state_dict = {
                k.replace(rep_prefix, replace_prefix_dict[rep_prefix]) if k.startswith(rep_prefix) else k: v
                for k, v in state_dict.items()
            }

        if is_fsdp_enabled():
            if is_local_dist_rank_0():
                model.load_state_dict(state_dict, strict=False)
        else:
            model.load_state_dict(state_dict, strict=False)
        # Make sure memory is freed before we load the next state dict.

        if not index_present:
            loaded_keys = state_dict.keys()

        del state_dict
        gc.collect()

    # missing keys
    missing_keys = [key for key in model_keys if key not in loaded_keys]
    unexpected_keys = [key for key in loaded_keys if key not in model_keys]

    if get_rank() == 0 and print_info:
        print(f"[info] missing_keys: {missing_keys}")
        print(f"[info] unexpected_keys: {unexpected_keys}")

    return {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys}