moshew commited on
Commit
ea41617
·
verified ·
1 Parent(s): e369a1a

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,398 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:19979
8
+ - loss:CoSENTLoss
9
+ base_model: avsolatorio/GIST-small-Embedding-v0
10
+ widget:
11
+ - source_sentence: why oval face shape is attractive?
12
+ sentences:
13
+ - Both are also designed to add depth to your face, but in different ways. Bronzing
14
+ primarily warms up your face, adding color in places where the sun would naturally
15
+ hit. ... On the other hand, contouring is a makeup artist-approved technique that
16
+ works to add structure and shadow to your face.
17
+ - '''Ahjussi'' literally means uncle. You can use it for people who are very old
18
+ than you. Like someone who is the age of your father, or someone with an age gap
19
+ of 20 years or above.'
20
+ - Most major banks will be open on Christmas Eve 2018, even though it's a federal
21
+ holiday and generally recognized as a bank holiday.
22
+ - source_sentence: is ceo same as owner?
23
+ sentences:
24
+ - The CEO reports to the Chairman (acting on behalf of the Board) and to the Board
25
+ directly. The Chairman is not responsible for executive matters regarding the
26
+ Company's business. Other than the CEO and the Company Secretary, no executive
27
+ reports to the Chairman, other than through the Board.
28
+ - Understanding Deregulation In response to the country's greatest financial crisis
29
+ in its history, Franklin D. Roosevelt's administration enacted many forms of financial
30
+ regulation, including the Securities Exchange Acts of 1933 and 1934 and the U.S.
31
+ Banking Act of 1933, otherwise known as the Glass-Steagall Act.
32
+ - Gdzie kupić wodorosty? Na naszym rynku są głównie algi suszone. Bez problemu kupimy
33
+ je w supermarketach, sklepach ze zdrową żywnością, bywają w rybnych - największy
34
+ wybór jest oczywiście w sklepach internetowych. Za 10 arkuszy glonów nori zapłacimy
35
+ ok.
36
+ - source_sentence: is gern stock a good buy?
37
+ sentences:
38
+ - 'The majority of these pads are made from one of two absorptive materials: Silica
39
+ gel (a purified sand) or cellulose (a purified plant fiber), which are then coated
40
+ in a non-toxic plastic wrapping that''s perforated, allowing the liquid to seep
41
+ in and stay there.'
42
+ - '[''The Vanguard Total Stock Market ETF (NYSEMKT:VTI)'', ''The Vanguard Total
43
+ International Stock ETF (NASDAQ:VXUS)'', ''Amazon.com (NASDAQ:AMZN)'', ''Alphabet
44
+ (NASDAQ:GOOG)(NASDAQ:GOOGL)'', ''Facebook (NASDAQ:FB)'', ''Intuitive Surgical
45
+ (NASDAQ:ISRG)'']'
46
+ - SCD is a disease that worsens over time. Treatments are available that can prevent
47
+ complications and lengthen the lives of those who have this condition.
48
+ - source_sentence: where are sulfhydryl groups found?
49
+ sentences:
50
+ - Sulfhydryl groups can be found in the amino acid cysteine. When two cysteine residues
51
+ are in close proximity to each other, they can form a disulfide bridge also called
52
+ cystine.
53
+ - '["On your Android phone or tablet, open your device''s Settings app .", ''Tap
54
+ Google. Manage your Google Account.'', ''At the top, tap Personal info.'', ''Under
55
+ "Profile," tap Name Edit. . You may be asked to sign in.'', ''Enter your name,
56
+ then tap Done.'']'
57
+ - '[''Difficulty digesting fat. It may take your body time to adjust to its new
58
+ method of digesting fat. ... '', ''Diarrhea and flatulence. Indigestion can cause
59
+ diarrhea or flatulence, often made worse by excess fat or too little fiber in
60
+ the diet. ... '', ''Constipation. ... '', ''Intestinal injury. ... '', ''Jaundice
61
+ or fever.'']'
62
+ - source_sentence: do assets in an irrevocable trust get a step up in basis?
63
+ sentences:
64
+ - An irrevocable grantor trust can own S corporation stock if it meets IRS regulations.
65
+ ... If the trust owner designation is not made or is unclear, the trust will not
66
+ qualify under IRS regulations. An irrevocable grantor trust does not have to make
67
+ an election to be an S corporation shareholder.
68
+ - Pineapple juice also contains bromelain, a group of enzymes linked to health benefits,
69
+ such as reduced inflammation, improved digestion, and stronger immunity ( 9 ).
70
+ Pineapple juice is rich in antioxidants, which help protect your body from damage
71
+ and disease.
72
+ - 'Ideally, fuel up two hours before you exercise by: Hydrating with water. Eating
73
+ healthy carbohydrates such as whole-grain cereals (with low-fat or skim milk),
74
+ whole-wheat toast, low-fat or fat-free yogurt, whole grain pasta, brown rice,
75
+ fruits and vegetables.'
76
+ pipeline_tag: sentence-similarity
77
+ library_name: sentence-transformers
78
+ ---
79
+
80
+ # SentenceTransformer based on avsolatorio/GIST-small-Embedding-v0
81
+
82
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
83
+
84
+ ## Model Details
85
+
86
+ ### Model Description
87
+ - **Model Type:** Sentence Transformer
88
+ - **Base model:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) <!-- at revision 75e62fd210b9fde790430e0b2f040b0b00a021b1 -->
89
+ - **Maximum Sequence Length:** 512 tokens
90
+ - **Output Dimensionality:** 384 dimensions
91
+ - **Similarity Function:** Cosine Similarity
92
+ <!-- - **Training Dataset:** Unknown -->
93
+ <!-- - **Language:** Unknown -->
94
+ <!-- - **License:** Unknown -->
95
+
96
+ ### Model Sources
97
+
98
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
99
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
100
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
101
+
102
+ ### Full Model Architecture
103
+
104
+ ```
105
+ SentenceTransformer(
106
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
107
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
108
+ (2): Normalize()
109
+ )
110
+ ```
111
+
112
+ ## Usage
113
+
114
+ ### Direct Usage (Sentence Transformers)
115
+
116
+ First install the Sentence Transformers library:
117
+
118
+ ```bash
119
+ pip install -U sentence-transformers
120
+ ```
121
+
122
+ Then you can load this model and run inference.
123
+ ```python
124
+ from sentence_transformers import SentenceTransformer
125
+
126
+ # Download from the 🤗 Hub
127
+ model = SentenceTransformer("moshew/gist_small_ft_gooaq_v4")
128
+ # Run inference
129
+ sentences = [
130
+ 'do assets in an irrevocable trust get a step up in basis?',
131
+ 'An irrevocable grantor trust can own S corporation stock if it meets IRS regulations. ... If the trust owner designation is not made or is unclear, the trust will not qualify under IRS regulations. An irrevocable grantor trust does not have to make an election to be an S corporation shareholder.',
132
+ 'Ideally, fuel up two hours before you exercise by: Hydrating with water. Eating healthy carbohydrates such as whole-grain cereals (with low-fat or skim milk), whole-wheat toast, low-fat or fat-free yogurt, whole grain pasta, brown rice, fruits and vegetables.',
133
+ ]
134
+ embeddings = model.encode(sentences)
135
+ print(embeddings.shape)
136
+ # [3, 384]
137
+
138
+ # Get the similarity scores for the embeddings
139
+ similarities = model.similarity(embeddings, embeddings)
140
+ print(similarities.shape)
141
+ # [3, 3]
142
+ ```
143
+
144
+ <!--
145
+ ### Direct Usage (Transformers)
146
+
147
+ <details><summary>Click to see the direct usage in Transformers</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Downstream Usage (Sentence Transformers)
154
+
155
+ You can finetune this model on your own dataset.
156
+
157
+ <details><summary>Click to expand</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Out-of-Scope Use
164
+
165
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
166
+ -->
167
+
168
+ <!--
169
+ ## Bias, Risks and Limitations
170
+
171
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
172
+ -->
173
+
174
+ <!--
175
+ ### Recommendations
176
+
177
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
178
+ -->
179
+
180
+ ## Training Details
181
+
182
+ ### Training Dataset
183
+
184
+ #### Unnamed Dataset
185
+
186
+ * Size: 19,979 training samples
187
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
188
+ * Approximate statistics based on the first 1000 samples:
189
+ | | sentence1 | sentence2 | label |
190
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
191
+ | type | string | string | float |
192
+ | details | <ul><li>min: 8 tokens</li><li>mean: 11.87 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 59.82 tokens</li><li>max: 139 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
193
+ * Samples:
194
+ | sentence1 | sentence2 | label |
195
+ |:-------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
196
+ | <code>if someone blocked you on iphone can you send a text?</code> | <code>If someone has blocked you on their device, you won't get an alert when it happens. You can still use iMessage to text your former contact, but they'll never receive the message or any notification of a text received in their Messages app.</code> | <code>1.0</code> |
197
+ | <code>if someone blocked you on iphone can you send a text?</code> | <code>If someone has blocked you on their device, you won't get an alert when it happens. You can still use iMessage to text your former contact, but they'll never receive the message or any notification of a text received in their Messages app. There is one clue that you've been blocked, though.</code> | <code>0.0</code> |
198
+ | <code>can you have a relationship without expectations?</code> | <code>Loving without expectations means being able to love someone even when they are letting you down. It means loving even when it feels awful. Even when you're crying so hard you can't see straight or say clear sentences. Loving someone without expectations means knowing they aren't perfect, but neither are you.</code> | <code>1.0</code> |
199
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
200
+ ```json
201
+ {
202
+ "scale": 20.0,
203
+ "similarity_fct": "pairwise_cos_sim"
204
+ }
205
+ ```
206
+
207
+ ### Training Hyperparameters
208
+ #### Non-Default Hyperparameters
209
+
210
+ - `per_device_train_batch_size`: 16
211
+ - `per_device_eval_batch_size`: 16
212
+ - `num_train_epochs`: 1
213
+ - `warmup_ratio`: 0.1
214
+ - `seed`: 12
215
+ - `bf16`: True
216
+ - `dataloader_num_workers`: 4
217
+
218
+ #### All Hyperparameters
219
+ <details><summary>Click to expand</summary>
220
+
221
+ - `overwrite_output_dir`: False
222
+ - `do_predict`: False
223
+ - `eval_strategy`: no
224
+ - `prediction_loss_only`: True
225
+ - `per_device_train_batch_size`: 16
226
+ - `per_device_eval_batch_size`: 16
227
+ - `per_gpu_train_batch_size`: None
228
+ - `per_gpu_eval_batch_size`: None
229
+ - `gradient_accumulation_steps`: 1
230
+ - `eval_accumulation_steps`: None
231
+ - `torch_empty_cache_steps`: None
232
+ - `learning_rate`: 5e-05
233
+ - `weight_decay`: 0.0
234
+ - `adam_beta1`: 0.9
235
+ - `adam_beta2`: 0.999
236
+ - `adam_epsilon`: 1e-08
237
+ - `max_grad_norm`: 1.0
238
+ - `num_train_epochs`: 1
239
+ - `max_steps`: -1
240
+ - `lr_scheduler_type`: linear
241
+ - `lr_scheduler_kwargs`: {}
242
+ - `warmup_ratio`: 0.1
243
+ - `warmup_steps`: 0
244
+ - `log_level`: passive
245
+ - `log_level_replica`: warning
246
+ - `log_on_each_node`: True
247
+ - `logging_nan_inf_filter`: True
248
+ - `save_safetensors`: True
249
+ - `save_on_each_node`: False
250
+ - `save_only_model`: False
251
+ - `restore_callback_states_from_checkpoint`: False
252
+ - `no_cuda`: False
253
+ - `use_cpu`: False
254
+ - `use_mps_device`: False
255
+ - `seed`: 12
256
+ - `data_seed`: None
257
+ - `jit_mode_eval`: False
258
+ - `use_ipex`: False
259
+ - `bf16`: True
260
+ - `fp16`: False
261
+ - `fp16_opt_level`: O1
262
+ - `half_precision_backend`: auto
263
+ - `bf16_full_eval`: False
264
+ - `fp16_full_eval`: False
265
+ - `tf32`: None
266
+ - `local_rank`: 0
267
+ - `ddp_backend`: None
268
+ - `tpu_num_cores`: None
269
+ - `tpu_metrics_debug`: False
270
+ - `debug`: []
271
+ - `dataloader_drop_last`: False
272
+ - `dataloader_num_workers`: 4
273
+ - `dataloader_prefetch_factor`: None
274
+ - `past_index`: -1
275
+ - `disable_tqdm`: False
276
+ - `remove_unused_columns`: True
277
+ - `label_names`: None
278
+ - `load_best_model_at_end`: False
279
+ - `ignore_data_skip`: False
280
+ - `fsdp`: []
281
+ - `fsdp_min_num_params`: 0
282
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
283
+ - `tp_size`: 0
284
+ - `fsdp_transformer_layer_cls_to_wrap`: None
285
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
286
+ - `deepspeed`: None
287
+ - `label_smoothing_factor`: 0.0
288
+ - `optim`: adamw_torch
289
+ - `optim_args`: None
290
+ - `adafactor`: False
291
+ - `group_by_length`: False
292
+ - `length_column_name`: length
293
+ - `ddp_find_unused_parameters`: None
294
+ - `ddp_bucket_cap_mb`: None
295
+ - `ddp_broadcast_buffers`: False
296
+ - `dataloader_pin_memory`: True
297
+ - `dataloader_persistent_workers`: False
298
+ - `skip_memory_metrics`: True
299
+ - `use_legacy_prediction_loop`: False
300
+ - `push_to_hub`: False
301
+ - `resume_from_checkpoint`: None
302
+ - `hub_model_id`: None
303
+ - `hub_strategy`: every_save
304
+ - `hub_private_repo`: None
305
+ - `hub_always_push`: False
306
+ - `gradient_checkpointing`: False
307
+ - `gradient_checkpointing_kwargs`: None
308
+ - `include_inputs_for_metrics`: False
309
+ - `include_for_metrics`: []
310
+ - `eval_do_concat_batches`: True
311
+ - `fp16_backend`: auto
312
+ - `push_to_hub_model_id`: None
313
+ - `push_to_hub_organization`: None
314
+ - `mp_parameters`:
315
+ - `auto_find_batch_size`: False
316
+ - `full_determinism`: False
317
+ - `torchdynamo`: None
318
+ - `ray_scope`: last
319
+ - `ddp_timeout`: 1800
320
+ - `torch_compile`: False
321
+ - `torch_compile_backend`: None
322
+ - `torch_compile_mode`: None
323
+ - `include_tokens_per_second`: False
324
+ - `include_num_input_tokens_seen`: False
325
+ - `neftune_noise_alpha`: None
326
+ - `optim_target_modules`: None
327
+ - `batch_eval_metrics`: False
328
+ - `eval_on_start`: False
329
+ - `use_liger_kernel`: False
330
+ - `eval_use_gather_object`: False
331
+ - `average_tokens_across_devices`: False
332
+ - `prompts`: None
333
+ - `batch_sampler`: batch_sampler
334
+ - `multi_dataset_batch_sampler`: proportional
335
+
336
+ </details>
337
+
338
+ ### Training Logs
339
+ | Epoch | Step | Training Loss |
340
+ |:------:|:----:|:-------------:|
341
+ | 0.0008 | 1 | 3.6013 |
342
+ | 0.8006 | 1000 | 3.4341 |
343
+
344
+
345
+ ### Framework Versions
346
+ - Python: 3.11.12
347
+ - Sentence Transformers: 4.1.0
348
+ - Transformers: 4.51.3
349
+ - PyTorch: 2.6.0+cu124
350
+ - Accelerate: 1.5.2
351
+ - Datasets: 3.5.0
352
+ - Tokenizers: 0.21.1
353
+
354
+ ## Citation
355
+
356
+ ### BibTeX
357
+
358
+ #### Sentence Transformers
359
+ ```bibtex
360
+ @inproceedings{reimers-2019-sentence-bert,
361
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
362
+ author = "Reimers, Nils and Gurevych, Iryna",
363
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
364
+ month = "11",
365
+ year = "2019",
366
+ publisher = "Association for Computational Linguistics",
367
+ url = "https://arxiv.org/abs/1908.10084",
368
+ }
369
+ ```
370
+
371
+ #### CoSENTLoss
372
+ ```bibtex
373
+ @online{kexuefm-8847,
374
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
375
+ author={Su Jianlin},
376
+ year={2022},
377
+ month={Jan},
378
+ url={https://kexue.fm/archives/8847},
379
+ }
380
+ ```
381
+
382
+ <!--
383
+ ## Glossary
384
+
385
+ *Clearly define terms in order to be accessible across audiences.*
386
+ -->
387
+
388
+ <!--
389
+ ## Model Card Authors
390
+
391
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
392
+ -->
393
+
394
+ <!--
395
+ ## Model Card Contact
396
+
397
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
398
+ -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:791abe7f5a88953363d55678d78f28905fef3b3bdc20acdf4e5cbe133ac5df25
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff