moshew commited on
Commit
39a97eb
·
verified ·
1 Parent(s): ebf7f28

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:2000
8
+ - loss:CoSENTLoss
9
+ base_model: avsolatorio/GIST-small-Embedding-v0
10
+ widget:
11
+ - source_sentence: do vivid seats tickets work?
12
+ sentences:
13
+ - Charlotte-Mecklenburg Schools will be closed for students on Friday due to the
14
+ forecast of severe weather. ... CMS staff members work with city and county leaders
15
+ to receive the most up-to-date information about road and weather conditions.
16
+ - Tickets are $40 per ticket and $400 for a table of ten. Tickets are available
17
+ for purchase when you register for the show.
18
+ - This service is currently offered free of charge by the bank. You can get the
19
+ last 'Available' balance of your account (by an SMS) by giving a Missed Call to
20
+ 18008431122. You can get the Mini Statement (by an SMS) for last 5 transactions
21
+ in your account by giving a Missed Call to 18008431133. 1.
22
+ - source_sentence: is alexa compatible with tv?
23
+ sentences:
24
+ - To fix this Echo red light, start with the restart of the router and Amazon Echo.
25
+ In case, the restart process doesn't work, check for the device and app update
26
+ in Alexa app. If it's available, click the 'Update' button for compatibility reason.
27
+ - Ligament - A small band of dense, white, fibrous elastic tissue. Ligaments connect
28
+ the ends of bones together in order to form a joint. Tendon - A tough, flexible
29
+ band of fibrous connective tissue that connects muscles to bones.
30
+ - There are 610 calories in a 1 bowl serving of El Pollo Loco Original Pollo Bowl.
31
+ - source_sentence: can you play fortnite save the world on mac?
32
+ sentences:
33
+ - '[''In the Music app on your Mac, click iTunes Store in the sidebar. ... '', ''Click
34
+ Purchased (below Quick Links) near the top right of the iTunes Store window.'',
35
+ ''Click Music near the top right of the page that appears. ... '', ''To download
36
+ an item, click its Download button .'']'
37
+ - Essential Oils in the Second and Third Trimesters. "In the second and third trimesters,
38
+ some essential oils are safe to use, as your baby is more developed," Edwards
39
+ adds. These include lavender, chamomile, and ylang ylang—all of which calm, relax,
40
+ and aid sleep.
41
+ - ADR holders do not have to transact the trade in the foreign currency or worry
42
+ about exchanging currency on the forex market. ... ADRs list on either the New
43
+ York Stock Exchange (NYSE), American Stock Exchange (AMEX), or the Nasdaq, but
44
+ they are also sold over-the-counter (OTC).
45
+ - source_sentence: how long does money take to transfer boi?
46
+ sentences:
47
+ - 'When will it take more than one working day? It will take more than one working
48
+ day to reach your payee''s bank when: You make a payment online after 3.30pm in
49
+ the Republic of Ireland or after 4.30pm in Northern Ireland and Great Britain
50
+ on a working day. Your payment will begin to process on the next working day.'
51
+ - If you had bought just one share of Microsoft at the IPO, you would now have 288
52
+ shares after all the splits. Those shares would be worth $44,505 at the current
53
+ stock quote of $154.53. A $5,000 investment would have purchased 238 shares at
54
+ the IPO price.
55
+ - FKM is the American standard ASTM short form name for Fluro-Elastomer. ... VITON™
56
+ is a registered trademark of Du Pont performance elastomers, the original developers
57
+ of the rubber. However, the Viton is also used as a general name for the material,
58
+ no matter who the manufacturer is.
59
+ - source_sentence: how long is a texas vehicle inspection report good for?
60
+ sentences:
61
+ - '[''Aerospace engineer.'', ''Automotive engineer.'', ''CAD technician.'', ''Contracting
62
+ civil engineer.'', ''Control and instrumentation engineer.'', ''Maintenance engineer.'',
63
+ ''Mechanical engineer.'', ''Nuclear engineer.'']'
64
+ - A key difference is that it's simpler to unlock a credit lock than it is to “thaw”
65
+ a credit freeze. But a freeze may afford legal protections that a lock doesn't.
66
+ ... The credit bureaus sometimes promote their credit lock services, which can
67
+ carry a monthly fee, alongside their credit freeze options, which are free.
68
+ - If your car fails its MOT you can only continue to drive it if the previous year's
69
+ MOT is still valid - which might occur if you submitted the car for its test two
70
+ weeks early. You can still drive it away from the testing centre or garage if
71
+ no 'dangerous' problems were identified during the MOT.
72
+ pipeline_tag: sentence-similarity
73
+ library_name: sentence-transformers
74
+ ---
75
+
76
+ # SentenceTransformer based on avsolatorio/GIST-small-Embedding-v0
77
+
78
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
79
+
80
+ ## Model Details
81
+
82
+ ### Model Description
83
+ - **Model Type:** Sentence Transformer
84
+ - **Base model:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) <!-- at revision 75e62fd210b9fde790430e0b2f040b0b00a021b1 -->
85
+ - **Maximum Sequence Length:** 512 tokens
86
+ - **Output Dimensionality:** 384 dimensions
87
+ - **Similarity Function:** Cosine Similarity
88
+ <!-- - **Training Dataset:** Unknown -->
89
+ <!-- - **Language:** Unknown -->
90
+ <!-- - **License:** Unknown -->
91
+
92
+ ### Model Sources
93
+
94
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
95
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
96
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
97
+
98
+ ### Full Model Architecture
99
+
100
+ ```
101
+ SentenceTransformer(
102
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
103
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
104
+ (2): Normalize()
105
+ )
106
+ ```
107
+
108
+ ## Usage
109
+
110
+ ### Direct Usage (Sentence Transformers)
111
+
112
+ First install the Sentence Transformers library:
113
+
114
+ ```bash
115
+ pip install -U sentence-transformers
116
+ ```
117
+
118
+ Then you can load this model and run inference.
119
+ ```python
120
+ from sentence_transformers import SentenceTransformer
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SentenceTransformer("moshew/gist_small_ft_gooaq_v3")
124
+ # Run inference
125
+ sentences = [
126
+ 'how long is a texas vehicle inspection report good for?',
127
+ "If your car fails its MOT you can only continue to drive it if the previous year's MOT is still valid - which might occur if you submitted the car for its test two weeks early. You can still drive it away from the testing centre or garage if no 'dangerous' problems were identified during the MOT.",
128
+ "['Aerospace engineer.', 'Automotive engineer.', 'CAD technician.', 'Contracting civil engineer.', 'Control and instrumentation engineer.', 'Maintenance engineer.', 'Mechanical engineer.', 'Nuclear engineer.']",
129
+ ]
130
+ embeddings = model.encode(sentences)
131
+ print(embeddings.shape)
132
+ # [3, 384]
133
+
134
+ # Get the similarity scores for the embeddings
135
+ similarities = model.similarity(embeddings, embeddings)
136
+ print(similarities.shape)
137
+ # [3, 3]
138
+ ```
139
+
140
+ <!--
141
+ ### Direct Usage (Transformers)
142
+
143
+ <details><summary>Click to see the direct usage in Transformers</summary>
144
+
145
+ </details>
146
+ -->
147
+
148
+ <!--
149
+ ### Downstream Usage (Sentence Transformers)
150
+
151
+ You can finetune this model on your own dataset.
152
+
153
+ <details><summary>Click to expand</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Out-of-Scope Use
160
+
161
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
162
+ -->
163
+
164
+ <!--
165
+ ## Bias, Risks and Limitations
166
+
167
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
168
+ -->
169
+
170
+ <!--
171
+ ### Recommendations
172
+
173
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
174
+ -->
175
+
176
+ ## Training Details
177
+
178
+ ### Training Dataset
179
+
180
+ #### Unnamed Dataset
181
+
182
+ * Size: 2,000 training samples
183
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
184
+ * Approximate statistics based on the first 1000 samples:
185
+ | | sentence1 | sentence2 | label |
186
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
187
+ | type | string | string | float |
188
+ | details | <ul><li>min: 8 tokens</li><li>mean: 12.05 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 59.84 tokens</li><li>max: 124 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
189
+ * Samples:
190
+ | sentence1 | sentence2 | label |
191
+ |:--------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
192
+ | <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Though there are some minor differences in shape and nutrients, Rapid-Rise Yeast is (pretty much) the same as Instant Yeast and Bread Machine Yeast. ... Also, Rapid-Rise Yeast is a little more potent than Active Dry Yeast and can be mixed in with your dry ingredients directly.</code> | <code>1.0</code> |
193
+ | <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Fermentation recycles NAD+, and produces 2 ATPs. In lactic acid fermentation, pyruvate from glycolysis changes to lactic acid. ... In alcoholic fermentation, pyruvate changes to alcohol and carbon dioxide. This type of fermentation is carried out by yeasts and some bacteria.</code> | <code>0.0</code> |
194
+ | <code>are light kits universal for ceiling fans?</code> | <code>Not all Universal Light Kits are actually Universal. They can be universal to only that manufacturer. ... Casablanca and Hunter Ceiling Fan Light Kits are universal only to their own fans.</code> | <code>1.0</code> |
195
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
196
+ ```json
197
+ {
198
+ "scale": 20.0,
199
+ "similarity_fct": "pairwise_cos_sim"
200
+ }
201
+ ```
202
+
203
+ ### Training Hyperparameters
204
+ #### Non-Default Hyperparameters
205
+
206
+ - `per_device_train_batch_size`: 16
207
+ - `per_device_eval_batch_size`: 16
208
+ - `num_train_epochs`: 1
209
+ - `warmup_ratio`: 0.1
210
+ - `seed`: 12
211
+ - `bf16`: True
212
+ - `dataloader_num_workers`: 4
213
+
214
+ #### All Hyperparameters
215
+ <details><summary>Click to expand</summary>
216
+
217
+ - `overwrite_output_dir`: False
218
+ - `do_predict`: False
219
+ - `eval_strategy`: no
220
+ - `prediction_loss_only`: True
221
+ - `per_device_train_batch_size`: 16
222
+ - `per_device_eval_batch_size`: 16
223
+ - `per_gpu_train_batch_size`: None
224
+ - `per_gpu_eval_batch_size`: None
225
+ - `gradient_accumulation_steps`: 1
226
+ - `eval_accumulation_steps`: None
227
+ - `torch_empty_cache_steps`: None
228
+ - `learning_rate`: 5e-05
229
+ - `weight_decay`: 0.0
230
+ - `adam_beta1`: 0.9
231
+ - `adam_beta2`: 0.999
232
+ - `adam_epsilon`: 1e-08
233
+ - `max_grad_norm`: 1.0
234
+ - `num_train_epochs`: 1
235
+ - `max_steps`: -1
236
+ - `lr_scheduler_type`: linear
237
+ - `lr_scheduler_kwargs`: {}
238
+ - `warmup_ratio`: 0.1
239
+ - `warmup_steps`: 0
240
+ - `log_level`: passive
241
+ - `log_level_replica`: warning
242
+ - `log_on_each_node`: True
243
+ - `logging_nan_inf_filter`: True
244
+ - `save_safetensors`: True
245
+ - `save_on_each_node`: False
246
+ - `save_only_model`: False
247
+ - `restore_callback_states_from_checkpoint`: False
248
+ - `no_cuda`: False
249
+ - `use_cpu`: False
250
+ - `use_mps_device`: False
251
+ - `seed`: 12
252
+ - `data_seed`: None
253
+ - `jit_mode_eval`: False
254
+ - `use_ipex`: False
255
+ - `bf16`: True
256
+ - `fp16`: False
257
+ - `fp16_opt_level`: O1
258
+ - `half_precision_backend`: auto
259
+ - `bf16_full_eval`: False
260
+ - `fp16_full_eval`: False
261
+ - `tf32`: None
262
+ - `local_rank`: 0
263
+ - `ddp_backend`: None
264
+ - `tpu_num_cores`: None
265
+ - `tpu_metrics_debug`: False
266
+ - `debug`: []
267
+ - `dataloader_drop_last`: False
268
+ - `dataloader_num_workers`: 4
269
+ - `dataloader_prefetch_factor`: None
270
+ - `past_index`: -1
271
+ - `disable_tqdm`: False
272
+ - `remove_unused_columns`: True
273
+ - `label_names`: None
274
+ - `load_best_model_at_end`: False
275
+ - `ignore_data_skip`: False
276
+ - `fsdp`: []
277
+ - `fsdp_min_num_params`: 0
278
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
279
+ - `tp_size`: 0
280
+ - `fsdp_transformer_layer_cls_to_wrap`: None
281
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
282
+ - `deepspeed`: None
283
+ - `label_smoothing_factor`: 0.0
284
+ - `optim`: adamw_torch
285
+ - `optim_args`: None
286
+ - `adafactor`: False
287
+ - `group_by_length`: False
288
+ - `length_column_name`: length
289
+ - `ddp_find_unused_parameters`: None
290
+ - `ddp_bucket_cap_mb`: None
291
+ - `ddp_broadcast_buffers`: False
292
+ - `dataloader_pin_memory`: True
293
+ - `dataloader_persistent_workers`: False
294
+ - `skip_memory_metrics`: True
295
+ - `use_legacy_prediction_loop`: False
296
+ - `push_to_hub`: False
297
+ - `resume_from_checkpoint`: None
298
+ - `hub_model_id`: None
299
+ - `hub_strategy`: every_save
300
+ - `hub_private_repo`: None
301
+ - `hub_always_push`: False
302
+ - `gradient_checkpointing`: False
303
+ - `gradient_checkpointing_kwargs`: None
304
+ - `include_inputs_for_metrics`: False
305
+ - `include_for_metrics`: []
306
+ - `eval_do_concat_batches`: True
307
+ - `fp16_backend`: auto
308
+ - `push_to_hub_model_id`: None
309
+ - `push_to_hub_organization`: None
310
+ - `mp_parameters`:
311
+ - `auto_find_batch_size`: False
312
+ - `full_determinism`: False
313
+ - `torchdynamo`: None
314
+ - `ray_scope`: last
315
+ - `ddp_timeout`: 1800
316
+ - `torch_compile`: False
317
+ - `torch_compile_backend`: None
318
+ - `torch_compile_mode`: None
319
+ - `include_tokens_per_second`: False
320
+ - `include_num_input_tokens_seen`: False
321
+ - `neftune_noise_alpha`: None
322
+ - `optim_target_modules`: None
323
+ - `batch_eval_metrics`: False
324
+ - `eval_on_start`: False
325
+ - `use_liger_kernel`: False
326
+ - `eval_use_gather_object`: False
327
+ - `average_tokens_across_devices`: False
328
+ - `prompts`: None
329
+ - `batch_sampler`: batch_sampler
330
+ - `multi_dataset_batch_sampler`: proportional
331
+
332
+ </details>
333
+
334
+ ### Training Logs
335
+ | Epoch | Step | Training Loss |
336
+ |:-----:|:----:|:-------------:|
337
+ | 0.008 | 1 | 3.5339 |
338
+
339
+
340
+ ### Framework Versions
341
+ - Python: 3.11.12
342
+ - Sentence Transformers: 4.1.0
343
+ - Transformers: 4.51.3
344
+ - PyTorch: 2.6.0+cu124
345
+ - Accelerate: 1.5.2
346
+ - Datasets: 3.5.0
347
+ - Tokenizers: 0.21.1
348
+
349
+ ## Citation
350
+
351
+ ### BibTeX
352
+
353
+ #### Sentence Transformers
354
+ ```bibtex
355
+ @inproceedings{reimers-2019-sentence-bert,
356
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
357
+ author = "Reimers, Nils and Gurevych, Iryna",
358
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
359
+ month = "11",
360
+ year = "2019",
361
+ publisher = "Association for Computational Linguistics",
362
+ url = "https://arxiv.org/abs/1908.10084",
363
+ }
364
+ ```
365
+
366
+ #### CoSENTLoss
367
+ ```bibtex
368
+ @online{kexuefm-8847,
369
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
370
+ author={Su Jianlin},
371
+ year={2022},
372
+ month={Jan},
373
+ url={https://kexue.fm/archives/8847},
374
+ }
375
+ ```
376
+
377
+ <!--
378
+ ## Glossary
379
+
380
+ *Clearly define terms in order to be accessible across audiences.*
381
+ -->
382
+
383
+ <!--
384
+ ## Model Card Authors
385
+
386
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Contact
391
+
392
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
393
+ -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 384,
10
+ "id2label": {
11
+ "0": "LABEL_0"
12
+ },
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 1536,
15
+ "label2id": {
16
+ "LABEL_0": 0
17
+ },
18
+ "layer_norm_eps": 1e-12,
19
+ "max_position_embeddings": 512,
20
+ "model_type": "bert",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "pad_token_id": 0,
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.3",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 30522
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.51.3",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3716606fb287bc20efce7a52f228bdc55a98656af72d17b7885226def7c2cce
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff