Add new SentenceTransformer model
Browse files- 1_Pooling/config.json +10 -0
- README.md +395 -0
- config.json +30 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:2000
|
8 |
+
- loss:CoSENTLoss
|
9 |
+
base_model: avsolatorio/GIST-small-Embedding-v0
|
10 |
+
widget:
|
11 |
+
- source_sentence: is alexa compatible with tv?
|
12 |
+
sentences:
|
13 |
+
- Of een ei iedere dag gezond of ongezond is, hangt af van wat je verder iedere
|
14 |
+
dag eet. Het Voedingscentrum adviseert om te variëren in vis, peulvruchten, vlees
|
15 |
+
en ei. Het eten van 2-3 eieren per week past in een gezonde voeding. Vegetariërs
|
16 |
+
kunnen 3-4 eieren per week eten.
|
17 |
+
- The price was right, the size was right and as it turns out this PYLE TV has the
|
18 |
+
best picture quality of all 5 TVs that our family watches! The setup was super
|
19 |
+
easy with no hassle. I would recommend it to anyone!
|
20 |
+
- According to the Association of British Insurers, insurance companies will look
|
21 |
+
into a policyholder's medical profile if they give up smoking. They'll commonly
|
22 |
+
seek a report from a policyholder's family doctor. If this raises concerns, they
|
23 |
+
may ask a policyholder to have a chest X-ray.
|
24 |
+
- source_sentence: is nyada a real college?
|
25 |
+
sentences:
|
26 |
+
- The instruments have been classified as Wind instruments (aero phonic) including
|
27 |
+
Bansuri and Nagaswaram; String instruments (chordophonic) including Dilruba and
|
28 |
+
Veena; Percussion instruments (membranophonic) including Tabla, Mridangam and
|
29 |
+
(idiophonic) Bortal, and Ghatam.
|
30 |
+
- This service is currently offered free of charge by the bank. You can get the
|
31 |
+
last 'Available' balance of your account (by an SMS) by giving a Missed Call to
|
32 |
+
18008431122. You can get the Mini Statement (by an SMS) for last 5 transactions
|
33 |
+
in your account by giving a Missed Call to 18008431133. 1.
|
34 |
+
- King Size Bed Known as a standard 5ft bed or 150cm wide by 200cm in length.
|
35 |
+
- source_sentence: is europe bigger than australia?
|
36 |
+
sentences:
|
37 |
+
- Although this is just five per cent of the world's land mass (149.45 million square
|
38 |
+
kilometres), Australia is the planet's sixth largest country after Russia, Canada,
|
39 |
+
China, the United States of America and Brazil. ... almost as great as that of
|
40 |
+
the United States of America. about 50 per cent greater than Europe, and.
|
41 |
+
- The recommended dose of evening primrose oil is 8 to 12 capsules a day, at a dose
|
42 |
+
of 500 milligrams per capsule. A range of evening primrose oil products are available
|
43 |
+
for purchase online.
|
44 |
+
- This includes a three-year law degree, a one-year LPC and finally a two-year training
|
45 |
+
contract with a law firm. Studying a non-law subject for your degree means you'll
|
46 |
+
need to take the GDL conversion course before your LPC, which adds one year to
|
47 |
+
the total.
|
48 |
+
- source_sentence: how long does money take to transfer boi?
|
49 |
+
sentences:
|
50 |
+
- 'When will it take more than one working day? It will take more than one working
|
51 |
+
day to reach your payee''s bank when: You make a payment online after 3.30pm in
|
52 |
+
the Republic of Ireland or after 4.30pm in Northern Ireland and Great Britain
|
53 |
+
on a working day. Your payment will begin to process on the next working day.'
|
54 |
+
- U.S. citizens travelling to South Korea for business or tourism do not need a
|
55 |
+
visa. ... Although obtaining a visa in advance can ease the entry process, as
|
56 |
+
long as you have a valid U.S. passport, you can enter the Republic of Korea without
|
57 |
+
a visa for a stay of up to 90 days if you are a tourist or on business.
|
58 |
+
- Structural insulated panels (SIPs) are a high performance building system for
|
59 |
+
residential and commercial construction. The panels consist of an insulating foam
|
60 |
+
core sandwiched between two structural facings, typically oriented strand board
|
61 |
+
(OSB). SIPs are manufactured under factory controlled conditions.
|
62 |
+
- source_sentence: where are bussola shoes made?
|
63 |
+
sentences:
|
64 |
+
- According to Harvard University, biking at a moderate speed of 12 to 13.9 miles
|
65 |
+
per hour will cause a 155-pound person to burn 298 calories in 30 minutes. At
|
66 |
+
a faster rate of 14 to 15.9 miles per hour, a person of the same weight will burn
|
67 |
+
372 calories.
|
68 |
+
- If you had bought just one share of Microsoft at the IPO, you would now have 288
|
69 |
+
shares after all the splits. Those shares would be worth $44,505 at the current
|
70 |
+
stock quote of $154.53. A $5,000 investment would have purchased 238 shares at
|
71 |
+
the IPO price.
|
72 |
+
- FRAM opens the first plant devoted exclusively to the development and manufacture
|
73 |
+
of heavy duty air filters and cartridges, in Nevada, Missouri.
|
74 |
+
pipeline_tag: sentence-similarity
|
75 |
+
library_name: sentence-transformers
|
76 |
+
---
|
77 |
+
|
78 |
+
# SentenceTransformer based on avsolatorio/GIST-small-Embedding-v0
|
79 |
+
|
80 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
81 |
+
|
82 |
+
## Model Details
|
83 |
+
|
84 |
+
### Model Description
|
85 |
+
- **Model Type:** Sentence Transformer
|
86 |
+
- **Base model:** [avsolatorio/GIST-small-Embedding-v0](https://huggingface.co/avsolatorio/GIST-small-Embedding-v0) <!-- at revision 75e62fd210b9fde790430e0b2f040b0b00a021b1 -->
|
87 |
+
- **Maximum Sequence Length:** 512 tokens
|
88 |
+
- **Output Dimensionality:** 384 dimensions
|
89 |
+
- **Similarity Function:** Cosine Similarity
|
90 |
+
<!-- - **Training Dataset:** Unknown -->
|
91 |
+
<!-- - **Language:** Unknown -->
|
92 |
+
<!-- - **License:** Unknown -->
|
93 |
+
|
94 |
+
### Model Sources
|
95 |
+
|
96 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
97 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
98 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
99 |
+
|
100 |
+
### Full Model Architecture
|
101 |
+
|
102 |
+
```
|
103 |
+
SentenceTransformer(
|
104 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
105 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
106 |
+
(2): Normalize()
|
107 |
+
)
|
108 |
+
```
|
109 |
+
|
110 |
+
## Usage
|
111 |
+
|
112 |
+
### Direct Usage (Sentence Transformers)
|
113 |
+
|
114 |
+
First install the Sentence Transformers library:
|
115 |
+
|
116 |
+
```bash
|
117 |
+
pip install -U sentence-transformers
|
118 |
+
```
|
119 |
+
|
120 |
+
Then you can load this model and run inference.
|
121 |
+
```python
|
122 |
+
from sentence_transformers import SentenceTransformer
|
123 |
+
|
124 |
+
# Download from the 🤗 Hub
|
125 |
+
model = SentenceTransformer("moshew/gist_small_ft_gooaq_v2")
|
126 |
+
# Run inference
|
127 |
+
sentences = [
|
128 |
+
'where are bussola shoes made?',
|
129 |
+
'FRAM opens the first plant devoted exclusively to the development and manufacture of heavy duty air filters and cartridges, in Nevada, Missouri.',
|
130 |
+
'According to Harvard University, biking at a moderate speed of 12 to 13.9 miles per hour will cause a 155-pound person to burn 298 calories in 30 minutes. At a faster rate of 14 to 15.9 miles per hour, a person of the same weight will burn 372 calories.',
|
131 |
+
]
|
132 |
+
embeddings = model.encode(sentences)
|
133 |
+
print(embeddings.shape)
|
134 |
+
# [3, 384]
|
135 |
+
|
136 |
+
# Get the similarity scores for the embeddings
|
137 |
+
similarities = model.similarity(embeddings, embeddings)
|
138 |
+
print(similarities.shape)
|
139 |
+
# [3, 3]
|
140 |
+
```
|
141 |
+
|
142 |
+
<!--
|
143 |
+
### Direct Usage (Transformers)
|
144 |
+
|
145 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
146 |
+
|
147 |
+
</details>
|
148 |
+
-->
|
149 |
+
|
150 |
+
<!--
|
151 |
+
### Downstream Usage (Sentence Transformers)
|
152 |
+
|
153 |
+
You can finetune this model on your own dataset.
|
154 |
+
|
155 |
+
<details><summary>Click to expand</summary>
|
156 |
+
|
157 |
+
</details>
|
158 |
+
-->
|
159 |
+
|
160 |
+
<!--
|
161 |
+
### Out-of-Scope Use
|
162 |
+
|
163 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
## Bias, Risks and Limitations
|
168 |
+
|
169 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
170 |
+
-->
|
171 |
+
|
172 |
+
<!--
|
173 |
+
### Recommendations
|
174 |
+
|
175 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
176 |
+
-->
|
177 |
+
|
178 |
+
## Training Details
|
179 |
+
|
180 |
+
### Training Dataset
|
181 |
+
|
182 |
+
#### Unnamed Dataset
|
183 |
+
|
184 |
+
* Size: 2,000 training samples
|
185 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
186 |
+
* Approximate statistics based on the first 1000 samples:
|
187 |
+
| | sentence1 | sentence2 | label |
|
188 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
189 |
+
| type | string | string | float |
|
190 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 12.05 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 59.28 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
191 |
+
* Samples:
|
192 |
+
| sentence1 | sentence2 | label |
|
193 |
+
|:--------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
194 |
+
| <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Though there are some minor differences in shape and nutrients, Rapid-Rise Yeast is (pretty much) the same as Instant Yeast and Bread Machine Yeast. ... Also, Rapid-Rise Yeast is a little more potent than Active Dry Yeast and can be mixed in with your dry ingredients directly.</code> | <code>1.0</code> |
|
195 |
+
| <code>what is the difference between rapid rise yeast and bread machine yeast?</code> | <code>Application. To clarify, double-acting baking powder is “regular” baking powder. Single-acting baking powder exits, but when a recipe calls for baking powder it means double-acting. And even if a recipe does call for single-acting, you can substitute double-acting without worrying about it changing the recipe.</code> | <code>0.0</code> |
|
196 |
+
| <code>are light kits universal for ceiling fans?</code> | <code>Not all Universal Light Kits are actually Universal. They can be universal to only that manufacturer. ... Casablanca and Hunter Ceiling Fan Light Kits are universal only to their own fans.</code> | <code>1.0</code> |
|
197 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
198 |
+
```json
|
199 |
+
{
|
200 |
+
"scale": 20.0,
|
201 |
+
"similarity_fct": "pairwise_cos_sim"
|
202 |
+
}
|
203 |
+
```
|
204 |
+
|
205 |
+
### Training Hyperparameters
|
206 |
+
#### Non-Default Hyperparameters
|
207 |
+
|
208 |
+
- `per_device_train_batch_size`: 16
|
209 |
+
- `per_device_eval_batch_size`: 16
|
210 |
+
- `num_train_epochs`: 1
|
211 |
+
- `warmup_ratio`: 0.1
|
212 |
+
- `seed`: 12
|
213 |
+
- `bf16`: True
|
214 |
+
- `dataloader_num_workers`: 4
|
215 |
+
|
216 |
+
#### All Hyperparameters
|
217 |
+
<details><summary>Click to expand</summary>
|
218 |
+
|
219 |
+
- `overwrite_output_dir`: False
|
220 |
+
- `do_predict`: False
|
221 |
+
- `eval_strategy`: no
|
222 |
+
- `prediction_loss_only`: True
|
223 |
+
- `per_device_train_batch_size`: 16
|
224 |
+
- `per_device_eval_batch_size`: 16
|
225 |
+
- `per_gpu_train_batch_size`: None
|
226 |
+
- `per_gpu_eval_batch_size`: None
|
227 |
+
- `gradient_accumulation_steps`: 1
|
228 |
+
- `eval_accumulation_steps`: None
|
229 |
+
- `torch_empty_cache_steps`: None
|
230 |
+
- `learning_rate`: 5e-05
|
231 |
+
- `weight_decay`: 0.0
|
232 |
+
- `adam_beta1`: 0.9
|
233 |
+
- `adam_beta2`: 0.999
|
234 |
+
- `adam_epsilon`: 1e-08
|
235 |
+
- `max_grad_norm`: 1.0
|
236 |
+
- `num_train_epochs`: 1
|
237 |
+
- `max_steps`: -1
|
238 |
+
- `lr_scheduler_type`: linear
|
239 |
+
- `lr_scheduler_kwargs`: {}
|
240 |
+
- `warmup_ratio`: 0.1
|
241 |
+
- `warmup_steps`: 0
|
242 |
+
- `log_level`: passive
|
243 |
+
- `log_level_replica`: warning
|
244 |
+
- `log_on_each_node`: True
|
245 |
+
- `logging_nan_inf_filter`: True
|
246 |
+
- `save_safetensors`: True
|
247 |
+
- `save_on_each_node`: False
|
248 |
+
- `save_only_model`: False
|
249 |
+
- `restore_callback_states_from_checkpoint`: False
|
250 |
+
- `no_cuda`: False
|
251 |
+
- `use_cpu`: False
|
252 |
+
- `use_mps_device`: False
|
253 |
+
- `seed`: 12
|
254 |
+
- `data_seed`: None
|
255 |
+
- `jit_mode_eval`: False
|
256 |
+
- `use_ipex`: False
|
257 |
+
- `bf16`: True
|
258 |
+
- `fp16`: False
|
259 |
+
- `fp16_opt_level`: O1
|
260 |
+
- `half_precision_backend`: auto
|
261 |
+
- `bf16_full_eval`: False
|
262 |
+
- `fp16_full_eval`: False
|
263 |
+
- `tf32`: None
|
264 |
+
- `local_rank`: 0
|
265 |
+
- `ddp_backend`: None
|
266 |
+
- `tpu_num_cores`: None
|
267 |
+
- `tpu_metrics_debug`: False
|
268 |
+
- `debug`: []
|
269 |
+
- `dataloader_drop_last`: False
|
270 |
+
- `dataloader_num_workers`: 4
|
271 |
+
- `dataloader_prefetch_factor`: None
|
272 |
+
- `past_index`: -1
|
273 |
+
- `disable_tqdm`: False
|
274 |
+
- `remove_unused_columns`: True
|
275 |
+
- `label_names`: None
|
276 |
+
- `load_best_model_at_end`: False
|
277 |
+
- `ignore_data_skip`: False
|
278 |
+
- `fsdp`: []
|
279 |
+
- `fsdp_min_num_params`: 0
|
280 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
281 |
+
- `tp_size`: 0
|
282 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
283 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
284 |
+
- `deepspeed`: None
|
285 |
+
- `label_smoothing_factor`: 0.0
|
286 |
+
- `optim`: adamw_torch
|
287 |
+
- `optim_args`: None
|
288 |
+
- `adafactor`: False
|
289 |
+
- `group_by_length`: False
|
290 |
+
- `length_column_name`: length
|
291 |
+
- `ddp_find_unused_parameters`: None
|
292 |
+
- `ddp_bucket_cap_mb`: None
|
293 |
+
- `ddp_broadcast_buffers`: False
|
294 |
+
- `dataloader_pin_memory`: True
|
295 |
+
- `dataloader_persistent_workers`: False
|
296 |
+
- `skip_memory_metrics`: True
|
297 |
+
- `use_legacy_prediction_loop`: False
|
298 |
+
- `push_to_hub`: False
|
299 |
+
- `resume_from_checkpoint`: None
|
300 |
+
- `hub_model_id`: None
|
301 |
+
- `hub_strategy`: every_save
|
302 |
+
- `hub_private_repo`: None
|
303 |
+
- `hub_always_push`: False
|
304 |
+
- `gradient_checkpointing`: False
|
305 |
+
- `gradient_checkpointing_kwargs`: None
|
306 |
+
- `include_inputs_for_metrics`: False
|
307 |
+
- `include_for_metrics`: []
|
308 |
+
- `eval_do_concat_batches`: True
|
309 |
+
- `fp16_backend`: auto
|
310 |
+
- `push_to_hub_model_id`: None
|
311 |
+
- `push_to_hub_organization`: None
|
312 |
+
- `mp_parameters`:
|
313 |
+
- `auto_find_batch_size`: False
|
314 |
+
- `full_determinism`: False
|
315 |
+
- `torchdynamo`: None
|
316 |
+
- `ray_scope`: last
|
317 |
+
- `ddp_timeout`: 1800
|
318 |
+
- `torch_compile`: False
|
319 |
+
- `torch_compile_backend`: None
|
320 |
+
- `torch_compile_mode`: None
|
321 |
+
- `include_tokens_per_second`: False
|
322 |
+
- `include_num_input_tokens_seen`: False
|
323 |
+
- `neftune_noise_alpha`: None
|
324 |
+
- `optim_target_modules`: None
|
325 |
+
- `batch_eval_metrics`: False
|
326 |
+
- `eval_on_start`: False
|
327 |
+
- `use_liger_kernel`: False
|
328 |
+
- `eval_use_gather_object`: False
|
329 |
+
- `average_tokens_across_devices`: False
|
330 |
+
- `prompts`: None
|
331 |
+
- `batch_sampler`: batch_sampler
|
332 |
+
- `multi_dataset_batch_sampler`: proportional
|
333 |
+
|
334 |
+
</details>
|
335 |
+
|
336 |
+
### Training Logs
|
337 |
+
| Epoch | Step | Training Loss |
|
338 |
+
|:-----:|:----:|:-------------:|
|
339 |
+
| 0.008 | 1 | 1.9382 |
|
340 |
+
|
341 |
+
|
342 |
+
### Framework Versions
|
343 |
+
- Python: 3.11.12
|
344 |
+
- Sentence Transformers: 4.1.0
|
345 |
+
- Transformers: 4.51.3
|
346 |
+
- PyTorch: 2.6.0+cu124
|
347 |
+
- Accelerate: 1.5.2
|
348 |
+
- Datasets: 3.5.0
|
349 |
+
- Tokenizers: 0.21.1
|
350 |
+
|
351 |
+
## Citation
|
352 |
+
|
353 |
+
### BibTeX
|
354 |
+
|
355 |
+
#### Sentence Transformers
|
356 |
+
```bibtex
|
357 |
+
@inproceedings{reimers-2019-sentence-bert,
|
358 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
359 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
360 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
361 |
+
month = "11",
|
362 |
+
year = "2019",
|
363 |
+
publisher = "Association for Computational Linguistics",
|
364 |
+
url = "https://arxiv.org/abs/1908.10084",
|
365 |
+
}
|
366 |
+
```
|
367 |
+
|
368 |
+
#### CoSENTLoss
|
369 |
+
```bibtex
|
370 |
+
@online{kexuefm-8847,
|
371 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
372 |
+
author={Su Jianlin},
|
373 |
+
year={2022},
|
374 |
+
month={Jan},
|
375 |
+
url={https://kexue.fm/archives/8847},
|
376 |
+
}
|
377 |
+
```
|
378 |
+
|
379 |
+
<!--
|
380 |
+
## Glossary
|
381 |
+
|
382 |
+
*Clearly define terms in order to be accessible across audiences.*
|
383 |
+
-->
|
384 |
+
|
385 |
+
<!--
|
386 |
+
## Model Card Authors
|
387 |
+
|
388 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
389 |
+
-->
|
390 |
+
|
391 |
+
<!--
|
392 |
+
## Model Card Contact
|
393 |
+
|
394 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
395 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 384,
|
10 |
+
"id2label": {
|
11 |
+
"0": "LABEL_0"
|
12 |
+
},
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 1536,
|
15 |
+
"label2id": {
|
16 |
+
"LABEL_0": 0
|
17 |
+
},
|
18 |
+
"layer_norm_eps": 1e-12,
|
19 |
+
"max_position_embeddings": 512,
|
20 |
+
"model_type": "bert",
|
21 |
+
"num_attention_heads": 12,
|
22 |
+
"num_hidden_layers": 12,
|
23 |
+
"pad_token_id": 0,
|
24 |
+
"position_embedding_type": "absolute",
|
25 |
+
"torch_dtype": "float32",
|
26 |
+
"transformers_version": "4.51.3",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 30522
|
30 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.51.3",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b4de81eaf6cb6757657f65eeaad44454d47a964df2748f996250bc382f0f1e0
|
3 |
+
size 133462128
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|