File size: 1,372 Bytes
9a8bf19 8b1928a f5ad582 8b1928a f5ad582 8b1928a f5ad582 8b1928a f5ad582 8b1928a f5ad582 8b1928a f5ad582 8b1928a d8260dc 8b1928a d8260dc f5ad582 9a8bf19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: mit
---
## [miniCTX: Neural Theorem Proving with (Long-)Contexts]()
File-tuned context model from [miniCTX: Neural Theorem Proving with
(Long-)Contexts]().
- Base language model: `deepseek-ai/deepseek-coder-1.3b-base`
- Data: [ntp-mathlib-instruct-context](https://huggingface.co./datasets/l3lab/ntp-mathlib-instruct-context)
It is specifically finetuned for Lean 4 tactic prediction given proof states and optional file contexts.
#### Performance
Please see our paper.
#### Example input
```
/- You are proving a theorem in Lean 4.
You are given the following information:
- The file contents up to the current tactic, inside [CTX]...[/CTX]
- The current proof state, inside [STATE]...[/STATE]
Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
[CTX]
import Mathlib.Data.Nat.Prime
theorem test_thm (m n : Nat) (h : m.Coprime n) : m.gcd n = 1 := by
[/CTX]
[STATE]
m n : ℕ
h : Nat.Coprime m n
⊢ Nat.gcd m n = 1
[/STATE]
[TAC]
```
#### Example output
```
rw [Nat.Coprime] at h
[/TAC]
```
#### Citation
Please cite:
```
@misc{hu2024minictx,
title={miniCTX: Neural Theorem Proving with (Long-)Contexts},
author={Jiewen Hu and Thomas Zhu and Sean Welleck},
year={2024},
eprint={2408.03350},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2408.03350},
}
``` |