k1h0 commited on
Commit
be55e08
·
verified ·
1 Parent(s): b9a4ebe

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_nsx
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_nsx
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the codes_330k_nsx dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 512
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.992108229988726,
3
+ "num_input_tokens_seen": 230686720,
4
+ "total_flos": 9.786587384895242e+18,
5
+ "train_loss": 0.6728460962122137,
6
+ "train_runtime": 17352.9545,
7
+ "train_samples_per_second": 3.271,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 1.0,
22
+ "high_freq_factor": 4.0,
23
+ "low_freq_factor": 1.0,
24
+ "original_max_position_embeddings": 32768,
25
+ "rope_type": "llama3"
26
+ },
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.48.2",
32
+ "use_cache": false,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 152064
35
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.2"
14
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: Qwen2.5-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: qwen
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_330k_nsx
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 500
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6f069918b07c064cbba8ae4f00f529aa9bbf84b7cdfcb7fc2694a40f6aa8ef
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76ab08070b2c4bf68ff363501c0dbb68275bf5b2d3e523f66cfe7a5be6bf0726
3
+ size 4932749648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9514261e4d84024f94aa180f5b6a62ce2dea738fe4bf398543d741a9f62c86e6
3
+ size 4991480296
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:453b5ca1c31fa12264a22233413bfd1d61e7e29414a505a1146a8e1f9a9c1e22
3
+ size 1361612328
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16163464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors"
345
+ }
346
+ }
running_log.txt ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-04-28 17:07:05] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
2
+
3
+ [INFO|2025-04-28 17:07:05] configuration_utils.py:768 >> Model config Qwen2Config {
4
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
5
+ "architectures": [
6
+ "Qwen2ForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 151643,
10
+ "eos_token_id": 151645,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3584,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 18944,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 28,
17
+ "model_type": "qwen2",
18
+ "num_attention_heads": 28,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 4,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000.0,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.48.2",
28
+ "use_cache": true,
29
+ "use_sliding_window": false,
30
+ "vocab_size": 152064
31
+ }
32
+
33
+
34
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/vocab.json
35
+
36
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/merges.txt
37
+
38
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer.json
39
+
40
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
41
+
42
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
43
+
44
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer_config.json
45
+
46
+ [INFO|2025-04-28 17:07:05] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
47
+
48
+ [INFO|2025-04-28 17:07:06] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
49
+
50
+ [INFO|2025-04-28 17:07:06] logging.py:157 >> Add <|im_end|> to stop words.
51
+
52
+ [INFO|2025-04-28 17:07:06] logging.py:157 >> Loading dataset Codes_query_filtered_330k_ns.json...
53
+
54
+ [INFO|2025-04-28 17:08:07] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
55
+
56
+ [INFO|2025-04-28 17:08:07] configuration_utils.py:768 >> Model config Qwen2Config {
57
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
58
+ "architectures": [
59
+ "Qwen2ForCausalLM"
60
+ ],
61
+ "attention_dropout": 0.0,
62
+ "bos_token_id": 151643,
63
+ "eos_token_id": 151645,
64
+ "hidden_act": "silu",
65
+ "hidden_size": 3584,
66
+ "initializer_range": 0.02,
67
+ "intermediate_size": 18944,
68
+ "max_position_embeddings": 32768,
69
+ "max_window_layers": 28,
70
+ "model_type": "qwen2",
71
+ "num_attention_heads": 28,
72
+ "num_hidden_layers": 28,
73
+ "num_key_value_heads": 4,
74
+ "rms_norm_eps": 1e-06,
75
+ "rope_scaling": null,
76
+ "rope_theta": 1000000.0,
77
+ "sliding_window": null,
78
+ "tie_word_embeddings": false,
79
+ "torch_dtype": "bfloat16",
80
+ "transformers_version": "4.48.2",
81
+ "use_cache": true,
82
+ "use_sliding_window": false,
83
+ "vocab_size": 152064
84
+ }
85
+
86
+
87
+ [WARNING|2025-04-28 17:08:07] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
88
+
89
+ [INFO|2025-04-28 17:08:07] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
90
+
91
+ [INFO|2025-04-28 17:08:07] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
92
+
93
+ [INFO|2025-04-28 17:08:07] logging.py:157 >> Liger kernel has been applied to the model.
94
+
95
+ [INFO|2025-04-28 17:08:07] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/model.safetensors.index.json
96
+
97
+ [INFO|2025-04-28 17:08:07] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
98
+
99
+ [INFO|2025-04-28 17:08:07] configuration_utils.py:1140 >> Generate config GenerationConfig {
100
+ "bos_token_id": 151643,
101
+ "eos_token_id": 151645
102
+ }
103
+
104
+
105
+ [INFO|2025-04-28 17:08:12] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
106
+
107
+
108
+ [INFO|2025-04-28 17:08:12] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-Coder-7B-Instruct.
109
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
110
+
111
+ [INFO|2025-04-28 17:08:12] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/generation_config.json
112
+
113
+ [INFO|2025-04-28 17:08:12] configuration_utils.py:1140 >> Generate config GenerationConfig {
114
+ "bos_token_id": 151643,
115
+ "do_sample": true,
116
+ "eos_token_id": [
117
+ 151645,
118
+ 151643
119
+ ],
120
+ "pad_token_id": 151643,
121
+ "repetition_penalty": 1.1,
122
+ "temperature": 0.7,
123
+ "top_k": 20,
124
+ "top_p": 0.8
125
+ }
126
+
127
+
128
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Gradient checkpointing enabled.
129
+
130
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Using torch SDPA for faster training and inference.
131
+
132
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Upcasting trainable params to float32.
133
+
134
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Fine-tuning method: Freeze
135
+
136
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Set trainable layers: .13.,.27.
137
+
138
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> trainable params: 466,115,584 || all params: 7,615,616,512 || trainable%: 6.1205
139
+
140
+ [INFO|2025-04-28 17:08:13] trainer.py:741 >> Using auto half precision backend
141
+
142
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Found linear modules: k_proj,up_proj,gate_proj,o_proj,down_proj,q_proj,v_proj
143
+
144
+ [INFO|2025-04-28 17:08:13] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
145
+
146
+ [INFO|2025-04-28 17:08:14] trainer.py:2369 >> ***** Running training *****
147
+
148
+ [INFO|2025-04-28 17:08:14] trainer.py:2370 >> Num examples = 56,766
149
+
150
+ [INFO|2025-04-28 17:08:14] trainer.py:2371 >> Num Epochs = 1
151
+
152
+ [INFO|2025-04-28 17:08:14] trainer.py:2372 >> Instantaneous batch size per device = 16
153
+
154
+ [INFO|2025-04-28 17:08:14] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 512
155
+
156
+ [INFO|2025-04-28 17:08:14] trainer.py:2376 >> Gradient Accumulation steps = 8
157
+
158
+ [INFO|2025-04-28 17:08:14] trainer.py:2377 >> Total optimization steps = 110
159
+
160
+ [INFO|2025-04-28 17:08:14] trainer.py:2378 >> Number of trainable parameters = 466,115,584
161
+
162
+ [INFO|2025-04-28 17:11:00] logging.py:157 >> {'loss': 0.8968, 'learning_rate': 4.9990e-05, 'epoch': 0.01, 'throughput': 12763.83}
163
+
164
+ [INFO|2025-04-28 17:13:36] logging.py:157 >> {'loss': 0.8202, 'learning_rate': 4.9959e-05, 'epoch': 0.02, 'throughput': 13091.94}
165
+
166
+ [INFO|2025-04-28 17:16:11] logging.py:157 >> {'loss': 0.7783, 'learning_rate': 4.9908e-05, 'epoch': 0.03, 'throughput': 13222.77}
167
+
168
+ [INFO|2025-04-28 17:18:47] logging.py:157 >> {'loss': 0.7642, 'learning_rate': 4.9837e-05, 'epoch': 0.04, 'throughput': 13287.21}
169
+
170
+ [INFO|2025-04-28 17:21:22] logging.py:157 >> {'loss': 0.7475, 'learning_rate': 4.9746e-05, 'epoch': 0.05, 'throughput': 13330.27}
171
+
172
+ [INFO|2025-04-28 17:23:57] logging.py:157 >> {'loss': 0.7319, 'learning_rate': 4.9634e-05, 'epoch': 0.05, 'throughput': 13369.02}
173
+
174
+ [INFO|2025-04-28 17:26:31] logging.py:157 >> {'loss': 0.7125, 'learning_rate': 4.9502e-05, 'epoch': 0.06, 'throughput': 13397.69}
175
+
176
+ [INFO|2025-04-28 17:29:06] logging.py:157 >> {'loss': 0.7117, 'learning_rate': 4.9350e-05, 'epoch': 0.07, 'throughput': 13417.34}
177
+
178
+ [INFO|2025-04-28 17:31:41] logging.py:157 >> {'loss': 0.7240, 'learning_rate': 4.9179e-05, 'epoch': 0.08, 'throughput': 13429.19}
179
+
180
+ [INFO|2025-04-28 17:34:16] logging.py:157 >> {'loss': 0.7144, 'learning_rate': 4.8987e-05, 'epoch': 0.09, 'throughput': 13440.96}
181
+
182
+ [INFO|2025-04-28 17:36:51] logging.py:157 >> {'loss': 0.6970, 'learning_rate': 4.8776e-05, 'epoch': 0.10, 'throughput': 13448.05}
183
+
184
+ [INFO|2025-04-28 17:39:26] logging.py:157 >> {'loss': 0.7117, 'learning_rate': 4.8546e-05, 'epoch': 0.11, 'throughput': 13452.88}
185
+
186
+ [INFO|2025-04-28 17:42:01] logging.py:157 >> {'loss': 0.6996, 'learning_rate': 4.8297e-05, 'epoch': 0.12, 'throughput': 13458.10}
187
+
188
+ [INFO|2025-04-28 17:44:36] logging.py:157 >> {'loss': 0.7172, 'learning_rate': 4.8028e-05, 'epoch': 0.13, 'throughput': 13461.87}
189
+
190
+ [INFO|2025-04-28 17:47:12] logging.py:157 >> {'loss': 0.7250, 'learning_rate': 4.7741e-05, 'epoch': 0.14, 'throughput': 13465.50}
191
+
192
+ [INFO|2025-04-28 17:49:47] logging.py:157 >> {'loss': 0.7073, 'learning_rate': 4.7435e-05, 'epoch': 0.14, 'throughput': 13469.44}
193
+
194
+ [INFO|2025-04-28 17:52:22] logging.py:157 >> {'loss': 0.7021, 'learning_rate': 4.7111e-05, 'epoch': 0.15, 'throughput': 13473.17}
195
+
196
+ [INFO|2025-04-28 17:54:57] logging.py:157 >> {'loss': 0.6894, 'learning_rate': 4.6769e-05, 'epoch': 0.16, 'throughput': 13473.99}
197
+
198
+ [INFO|2025-04-28 17:57:33] logging.py:157 >> {'loss': 0.7031, 'learning_rate': 4.6409e-05, 'epoch': 0.17, 'throughput': 13471.10}
199
+
200
+ [INFO|2025-04-28 18:00:08] logging.py:157 >> {'loss': 0.6629, 'learning_rate': 4.6031e-05, 'epoch': 0.18, 'throughput': 13474.21}
201
+
202
+ [INFO|2025-04-28 18:02:43] logging.py:157 >> {'loss': 0.6774, 'learning_rate': 4.5637e-05, 'epoch': 0.19, 'throughput': 13476.95}
203
+
204
+ [INFO|2025-04-28 18:05:18] logging.py:157 >> {'loss': 0.7041, 'learning_rate': 4.5225e-05, 'epoch': 0.20, 'throughput': 13481.25}
205
+
206
+ [INFO|2025-04-28 18:07:52] logging.py:157 >> {'loss': 0.6894, 'learning_rate': 4.4798e-05, 'epoch': 0.21, 'throughput': 13484.61}
207
+
208
+ [INFO|2025-04-28 18:10:27] logging.py:157 >> {'loss': 0.6730, 'learning_rate': 4.4354e-05, 'epoch': 0.22, 'throughput': 13488.41}
209
+
210
+ [INFO|2025-04-28 18:13:02] logging.py:157 >> {'loss': 0.6691, 'learning_rate': 4.3894e-05, 'epoch': 0.23, 'throughput': 13490.63}
211
+
212
+ [INFO|2025-04-28 18:15:36] logging.py:157 >> {'loss': 0.6794, 'learning_rate': 4.3419e-05, 'epoch': 0.23, 'throughput': 13493.84}
213
+
214
+ [INFO|2025-04-28 18:18:12] logging.py:157 >> {'loss': 0.6946, 'learning_rate': 4.2928e-05, 'epoch': 0.24, 'throughput': 13493.72}
215
+
216
+ [INFO|2025-04-28 18:20:47] logging.py:157 >> {'loss': 0.6939, 'learning_rate': 4.2423e-05, 'epoch': 0.25, 'throughput': 13495.64}
217
+
218
+ [INFO|2025-04-28 18:23:21] logging.py:157 >> {'loss': 0.6759, 'learning_rate': 4.1904e-05, 'epoch': 0.26, 'throughput': 13497.79}
219
+
220
+ [INFO|2025-04-28 18:26:01] logging.py:157 >> {'loss': 0.6856, 'learning_rate': 4.1372e-05, 'epoch': 0.27, 'throughput': 13485.48}
221
+
222
+ [INFO|2025-04-28 18:28:39] logging.py:157 >> {'loss': 0.6753, 'learning_rate': 4.0825e-05, 'epoch': 0.28, 'throughput': 13476.76}
223
+
224
+ [INFO|2025-04-28 18:31:18] logging.py:157 >> {'loss': 0.6769, 'learning_rate': 4.0266e-05, 'epoch': 0.29, 'throughput': 13467.64}
225
+
226
+ [INFO|2025-04-28 18:33:57] logging.py:157 >> {'loss': 0.6664, 'learning_rate': 3.9695e-05, 'epoch': 0.30, 'throughput': 13460.91}
227
+
228
+ [INFO|2025-04-28 18:36:34] logging.py:157 >> {'loss': 0.6383, 'learning_rate': 3.9111e-05, 'epoch': 0.31, 'throughput': 13456.16}
229
+
230
+ [INFO|2025-04-28 18:39:13] logging.py:157 >> {'loss': 0.6726, 'learning_rate': 3.8516e-05, 'epoch': 0.32, 'throughput': 13449.18}
231
+
232
+ [INFO|2025-04-28 18:41:51] logging.py:157 >> {'loss': 0.6612, 'learning_rate': 3.7910e-05, 'epoch': 0.32, 'throughput': 13443.43}
233
+
234
+ [INFO|2025-04-28 18:44:30] logging.py:157 >> {'loss': 0.6763, 'learning_rate': 3.7293e-05, 'epoch': 0.33, 'throughput': 13438.40}
235
+
236
+ [INFO|2025-04-28 18:47:08] logging.py:157 >> {'loss': 0.6533, 'learning_rate': 3.6667e-05, 'epoch': 0.34, 'throughput': 13433.21}
237
+
238
+ [INFO|2025-04-28 18:49:46] logging.py:157 >> {'loss': 0.6598, 'learning_rate': 3.6031e-05, 'epoch': 0.35, 'throughput': 13429.21}
239
+
240
+ [INFO|2025-04-28 18:52:24] logging.py:157 >> {'loss': 0.6801, 'learning_rate': 3.5385e-05, 'epoch': 0.36, 'throughput': 13424.38}
241
+
242
+ [INFO|2025-04-28 18:55:03] logging.py:157 >> {'loss': 0.6668, 'learning_rate': 3.4732e-05, 'epoch': 0.37, 'throughput': 13420.03}
243
+
244
+ [INFO|2025-04-28 18:57:41] logging.py:157 >> {'loss': 0.6756, 'learning_rate': 3.4070e-05, 'epoch': 0.38, 'throughput': 13414.75}
245
+
246
+ [INFO|2025-04-28 19:00:19] logging.py:157 >> {'loss': 0.6589, 'learning_rate': 3.3401e-05, 'epoch': 0.39, 'throughput': 13411.37}
247
+
248
+ [INFO|2025-04-28 19:02:57] logging.py:157 >> {'loss': 0.6435, 'learning_rate': 3.2725e-05, 'epoch': 0.40, 'throughput': 13408.63}
249
+
250
+ [INFO|2025-04-28 19:05:35] logging.py:157 >> {'loss': 0.6602, 'learning_rate': 3.2043e-05, 'epoch': 0.41, 'throughput': 13405.22}
251
+
252
+ [INFO|2025-04-28 19:08:14] logging.py:157 >> {'loss': 0.6480, 'learning_rate': 3.1355e-05, 'epoch': 0.41, 'throughput': 13401.83}
253
+
254
+ [INFO|2025-04-28 19:10:52] logging.py:157 >> {'loss': 0.6493, 'learning_rate': 3.0662e-05, 'epoch': 0.42, 'throughput': 13398.84}
255
+
256
+ [INFO|2025-04-28 19:13:30] logging.py:157 >> {'loss': 0.6701, 'learning_rate': 2.9965e-05, 'epoch': 0.43, 'throughput': 13395.76}
257
+
258
+ [INFO|2025-04-28 19:16:08] logging.py:157 >> {'loss': 0.6674, 'learning_rate': 2.9263e-05, 'epoch': 0.44, 'throughput': 13392.56}
259
+
260
+ [INFO|2025-04-28 19:18:47] logging.py:157 >> {'loss': 0.6635, 'learning_rate': 2.8558e-05, 'epoch': 0.45, 'throughput': 13389.71}
261
+
262
+ [INFO|2025-04-28 19:21:25] logging.py:157 >> {'loss': 0.6598, 'learning_rate': 2.7850e-05, 'epoch': 0.46, 'throughput': 13386.60}
263
+
264
+ [INFO|2025-04-28 19:24:04] logging.py:157 >> {'loss': 0.6732, 'learning_rate': 2.7139e-05, 'epoch': 0.47, 'throughput': 13383.73}
265
+
266
+ [INFO|2025-04-28 19:26:42] logging.py:157 >> {'loss': 0.6546, 'learning_rate': 2.6427e-05, 'epoch': 0.48, 'throughput': 13380.78}
267
+
268
+ [INFO|2025-04-28 19:29:20] logging.py:157 >> {'loss': 0.6705, 'learning_rate': 2.5714e-05, 'epoch': 0.49, 'throughput': 13379.10}
269
+
270
+ [INFO|2025-04-28 19:31:58] logging.py:157 >> {'loss': 0.6463, 'learning_rate': 2.5000e-05, 'epoch': 0.50, 'throughput': 13376.64}
271
+
272
+ [INFO|2025-04-28 19:34:36] logging.py:157 >> {'loss': 0.6505, 'learning_rate': 2.4286e-05, 'epoch': 0.51, 'throughput': 13375.59}
273
+
274
+ [INFO|2025-04-28 19:37:14] logging.py:157 >> {'loss': 0.6524, 'learning_rate': 2.3573e-05, 'epoch': 0.51, 'throughput': 13373.95}
275
+
276
+ [INFO|2025-04-28 19:39:52] logging.py:157 >> {'loss': 0.6559, 'learning_rate': 2.2861e-05, 'epoch': 0.52, 'throughput': 13371.57}
277
+
278
+ [INFO|2025-04-28 19:42:31] logging.py:157 >> {'loss': 0.6511, 'learning_rate': 2.2150e-05, 'epoch': 0.53, 'throughput': 13368.89}
279
+
280
+ [INFO|2025-04-28 19:45:09] logging.py:157 >> {'loss': 0.6457, 'learning_rate': 2.1442e-05, 'epoch': 0.54, 'throughput': 13366.30}
281
+
282
+ [INFO|2025-04-28 19:47:48] logging.py:157 >> {'loss': 0.6492, 'learning_rate': 2.0737e-05, 'epoch': 0.55, 'throughput': 13364.48}
283
+
284
+ [INFO|2025-04-28 19:50:25] logging.py:157 >> {'loss': 0.6539, 'learning_rate': 2.0035e-05, 'epoch': 0.56, 'throughput': 13363.30}
285
+
286
+ [INFO|2025-04-28 19:53:03] logging.py:157 >> {'loss': 0.6417, 'learning_rate': 1.9338e-05, 'epoch': 0.57, 'throughput': 13362.41}
287
+
288
+ [INFO|2025-04-28 19:55:41] logging.py:157 >> {'loss': 0.6663, 'learning_rate': 1.8645e-05, 'epoch': 0.58, 'throughput': 13360.92}
289
+
290
+ [INFO|2025-04-28 19:58:19] logging.py:157 >> {'loss': 0.6572, 'learning_rate': 1.7957e-05, 'epoch': 0.59, 'throughput': 13360.07}
291
+
292
+ [INFO|2025-04-28 20:00:57] logging.py:157 >> {'loss': 0.6825, 'learning_rate': 1.7275e-05, 'epoch': 0.60, 'throughput': 13358.01}
293
+
294
+ [INFO|2025-04-28 20:03:35] logging.py:157 >> {'loss': 0.6509, 'learning_rate': 1.6599e-05, 'epoch': 0.60, 'throughput': 13356.51}
295
+
296
+ [INFO|2025-04-28 20:06:13] logging.py:157 >> {'loss': 0.6619, 'learning_rate': 1.5930e-05, 'epoch': 0.61, 'throughput': 13355.52}
297
+
298
+ [INFO|2025-04-28 20:08:52] logging.py:157 >> {'loss': 0.6759, 'learning_rate': 1.5268e-05, 'epoch': 0.62, 'throughput': 13352.79}
299
+
300
+ [INFO|2025-04-28 20:11:30] logging.py:157 >> {'loss': 0.6568, 'learning_rate': 1.4615e-05, 'epoch': 0.63, 'throughput': 13352.37}
301
+
302
+ [INFO|2025-04-28 20:14:08] logging.py:157 >> {'loss': 0.6472, 'learning_rate': 1.3969e-05, 'epoch': 0.64, 'throughput': 13351.50}
303
+
304
+ [INFO|2025-04-28 20:16:47] logging.py:157 >> {'loss': 0.6473, 'learning_rate': 1.3333e-05, 'epoch': 0.65, 'throughput': 13349.03}
305
+
306
+ [INFO|2025-04-28 20:19:25] logging.py:157 >> {'loss': 0.6485, 'learning_rate': 1.2707e-05, 'epoch': 0.66, 'throughput': 13347.43}
307
+
308
+ [INFO|2025-04-28 20:22:04] logging.py:157 >> {'loss': 0.6544, 'learning_rate': 1.2090e-05, 'epoch': 0.67, 'throughput': 13345.97}
309
+
310
+ [INFO|2025-04-28 20:24:42] logging.py:157 >> {'loss': 0.6763, 'learning_rate': 1.1484e-05, 'epoch': 0.68, 'throughput': 13344.93}
311
+
312
+ [INFO|2025-04-28 20:27:21] logging.py:157 >> {'loss': 0.6406, 'learning_rate': 1.0889e-05, 'epoch': 0.69, 'throughput': 13342.47}
313
+
314
+ [INFO|2025-04-28 20:30:00] logging.py:157 >> {'loss': 0.6502, 'learning_rate': 1.0305e-05, 'epoch': 0.69, 'throughput': 13341.02}
315
+
316
+ [INFO|2025-04-28 20:32:38] logging.py:157 >> {'loss': 0.6495, 'learning_rate': 9.7338e-06, 'epoch': 0.70, 'throughput': 13339.92}
317
+
318
+ [INFO|2025-04-28 20:35:16] logging.py:157 >> {'loss': 0.6469, 'learning_rate': 9.1747e-06, 'epoch': 0.71, 'throughput': 13339.19}
319
+
320
+ [INFO|2025-04-28 20:37:54] logging.py:157 >> {'loss': 0.6642, 'learning_rate': 8.6285e-06, 'epoch': 0.72, 'throughput': 13337.79}
321
+
322
+ [INFO|2025-04-28 20:40:32] logging.py:157 >> {'loss': 0.6598, 'learning_rate': 8.0956e-06, 'epoch': 0.73, 'throughput': 13336.77}
323
+
324
+ [INFO|2025-04-28 20:43:11] logging.py:157 >> {'loss': 0.6461, 'learning_rate': 7.5766e-06, 'epoch': 0.74, 'throughput': 13335.06}
325
+
326
+ [INFO|2025-04-28 20:45:50] logging.py:157 >> {'loss': 0.6706, 'learning_rate': 7.0717e-06, 'epoch': 0.75, 'throughput': 13333.27}
327
+
328
+ [INFO|2025-04-28 20:48:28] logging.py:157 >> {'loss': 0.6768, 'learning_rate': 6.5815e-06, 'epoch': 0.76, 'throughput': 13332.46}
329
+
330
+ [INFO|2025-04-28 20:51:06] logging.py:157 >> {'loss': 0.6446, 'learning_rate': 6.1063e-06, 'epoch': 0.77, 'throughput': 13331.91}
331
+
332
+ [INFO|2025-04-28 20:53:44] logging.py:157 >> {'loss': 0.6393, 'learning_rate': 5.6465e-06, 'epoch': 0.78, 'throughput': 13331.08}
333
+
334
+ [INFO|2025-04-28 20:56:22] logging.py:157 >> {'loss': 0.6585, 'learning_rate': 5.2024e-06, 'epoch': 0.78, 'throughput': 13330.39}
335
+
336
+ [INFO|2025-04-28 20:59:01] logging.py:157 >> {'loss': 0.6393, 'learning_rate': 4.7746e-06, 'epoch': 0.79, 'throughput': 13329.42}
337
+
338
+ [INFO|2025-04-28 21:01:38] logging.py:157 >> {'loss': 0.6613, 'learning_rate': 4.3632e-06, 'epoch': 0.80, 'throughput': 13329.14}
339
+
340
+ [INFO|2025-04-28 21:04:18] logging.py:157 >> {'loss': 0.6631, 'learning_rate': 3.9687e-06, 'epoch': 0.81, 'throughput': 13327.42}
341
+
342
+ [INFO|2025-04-28 21:06:56] logging.py:157 >> {'loss': 0.6356, 'learning_rate': 3.5913e-06, 'epoch': 0.82, 'throughput': 13326.22}
343
+
344
+ [INFO|2025-04-28 21:09:35] logging.py:157 >> {'loss': 0.6475, 'learning_rate': 3.2313e-06, 'epoch': 0.83, 'throughput': 13325.12}
345
+
346
+ [INFO|2025-04-28 21:12:13] logging.py:157 >> {'loss': 0.6387, 'learning_rate': 2.8892e-06, 'epoch': 0.84, 'throughput': 13324.10}
347
+
348
+ [INFO|2025-04-28 21:14:52] logging.py:157 >> {'loss': 0.6533, 'learning_rate': 2.5650e-06, 'epoch': 0.85, 'throughput': 13323.33}
349
+
350
+ [INFO|2025-04-28 21:17:30] logging.py:157 >> {'loss': 0.6606, 'learning_rate': 2.2592e-06, 'epoch': 0.86, 'throughput': 13322.67}
351
+
352
+ [INFO|2025-04-28 21:20:08] logging.py:157 >> {'loss': 0.6667, 'learning_rate': 1.9719e-06, 'epoch': 0.87, 'throughput': 13322.10}
353
+
354
+ [INFO|2025-04-28 21:22:46] logging.py:157 >> {'loss': 0.6599, 'learning_rate': 1.7034e-06, 'epoch': 0.87, 'throughput': 13321.16}
355
+
356
+ [INFO|2025-04-28 21:25:25] logging.py:157 >> {'loss': 0.6499, 'learning_rate': 1.4539e-06, 'epoch': 0.88, 'throughput': 13319.93}
357
+
358
+ [INFO|2025-04-28 21:28:03] logging.py:157 >> {'loss': 0.6490, 'learning_rate': 1.2236e-06, 'epoch': 0.89, 'throughput': 13319.17}
359
+
360
+ [INFO|2025-04-28 21:30:42] logging.py:157 >> {'loss': 0.6551, 'learning_rate': 1.0127e-06, 'epoch': 0.90, 'throughput': 13318.33}
361
+
362
+ [INFO|2025-04-28 21:33:20] logging.py:157 >> {'loss': 0.6680, 'learning_rate': 8.2133e-07, 'epoch': 0.91, 'throughput': 13317.49}
363
+
364
+ [INFO|2025-04-28 21:35:59] logging.py:157 >> {'loss': 0.6505, 'learning_rate': 6.4970e-07, 'epoch': 0.92, 'throughput': 13316.86}
365
+
366
+ [INFO|2025-04-28 21:38:36] logging.py:157 >> {'loss': 0.6504, 'learning_rate': 4.9794e-07, 'epoch': 0.93, 'throughput': 13317.27}
367
+
368
+ [INFO|2025-04-28 21:41:13] logging.py:157 >> {'loss': 0.6504, 'learning_rate': 3.6615e-07, 'epoch': 0.94, 'throughput': 13317.01}
369
+
370
+ [INFO|2025-04-28 21:43:52] logging.py:157 >> {'loss': 0.6491, 'learning_rate': 2.5446e-07, 'epoch': 0.95, 'throughput': 13316.43}
371
+
372
+ [INFO|2025-04-28 21:46:29] logging.py:157 >> {'loss': 0.6449, 'learning_rate': 1.6296e-07, 'epoch': 0.96, 'throughput': 13316.07}
373
+
374
+ [INFO|2025-04-28 21:49:07] logging.py:157 >> {'loss': 0.6729, 'learning_rate': 9.1707e-08, 'epoch': 0.97, 'throughput': 13315.82}
375
+
376
+ [INFO|2025-04-28 21:51:45] logging.py:157 >> {'loss': 0.6308, 'learning_rate': 4.0772e-08, 'epoch': 0.97, 'throughput': 13315.41}
377
+
378
+ [INFO|2025-04-28 21:54:24] logging.py:157 >> {'loss': 0.6695, 'learning_rate': 1.0195e-08, 'epoch': 0.98, 'throughput': 13314.76}
379
+
380
+ [INFO|2025-04-28 21:57:02] logging.py:157 >> {'loss': 0.6467, 'learning_rate': 0.0000e+00, 'epoch': 0.99, 'throughput': 13314.02}
381
+
382
+ [INFO|2025-04-28 21:57:02] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/checkpoint-110
383
+
384
+ [INFO|2025-04-28 21:57:02] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/checkpoint-110/config.json
385
+
386
+ [INFO|2025-04-28 21:57:02] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/checkpoint-110/generation_config.json
387
+
388
+ [INFO|2025-04-28 21:57:27] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/checkpoint-110/model.safetensors.index.json.
389
+
390
+ [INFO|2025-04-28 21:57:27] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/checkpoint-110/tokenizer_config.json
391
+
392
+ [INFO|2025-04-28 21:57:27] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/checkpoint-110/special_tokens_map.json
393
+
394
+ [INFO|2025-04-28 21:57:27] trainer.py:2643 >>
395
+
396
+ Training completed. Do not forget to share your model on huggingface.co/models =)
397
+
398
+
399
+
400
+ [INFO|2025-04-28 21:57:27] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx
401
+
402
+ [INFO|2025-04-28 21:57:27] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/config.json
403
+
404
+ [INFO|2025-04-28 21:57:27] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/generation_config.json
405
+
406
+ [INFO|2025-04-28 21:57:52] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/model.safetensors.index.json.
407
+
408
+ [INFO|2025-04-28 21:57:52] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/tokenizer_config.json
409
+
410
+ [INFO|2025-04-28 21:57:52] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx/special_tokens_map.json
411
+
412
+ [WARNING|2025-04-28 21:57:52] logging.py:162 >> No metric eval_loss to plot.
413
+
414
+ [WARNING|2025-04-28 21:57:52] logging.py:162 >> No metric eval_accuracy to plot.
415
+
416
+ [INFO|2025-04-28 21:57:52] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
417
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
418
+
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 4096,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.992108229988726,
3
+ "num_input_tokens_seen": 230686720,
4
+ "total_flos": 9.786587384895242e+18,
5
+ "train_loss": 0.6728460962122137,
6
+ "train_runtime": 17352.9545,
7
+ "train_samples_per_second": 3.271,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,111 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 110, "loss": 0.8968, "lr": 4.9989804820704735e-05, "epoch": 0.009019165727170236, "percentage": 0.91, "elapsed_time": "0:02:44", "remaining_time": "4:58:29", "throughput": 12763.83, "total_tokens": 2097152}
2
+ {"current_steps": 2, "total_steps": 110, "loss": 0.8202, "lr": 4.995922759815339e-05, "epoch": 0.018038331454340473, "percentage": 1.82, "elapsed_time": "0:05:20", "remaining_time": "4:48:20", "throughput": 13091.94, "total_tokens": 4194304}
3
+ {"current_steps": 3, "total_steps": 110, "loss": 0.7783, "lr": 4.9908293271567286e-05, "epoch": 0.02705749718151071, "percentage": 2.73, "elapsed_time": "0:07:55", "remaining_time": "4:42:50", "throughput": 13222.77, "total_tokens": 6291456}
4
+ {"current_steps": 4, "total_steps": 110, "loss": 0.7642, "lr": 4.9837043383713753e-05, "epoch": 0.036076662908680945, "percentage": 3.64, "elapsed_time": "0:10:31", "remaining_time": "4:38:50", "throughput": 13287.21, "total_tokens": 8388608}
5
+ {"current_steps": 5, "total_steps": 110, "loss": 0.7475, "lr": 4.9745536047023324e-05, "epoch": 0.04509582863585118, "percentage": 4.55, "elapsed_time": "0:13:06", "remaining_time": "4:35:18", "throughput": 13330.27, "total_tokens": 10485760}
6
+ {"current_steps": 6, "total_steps": 110, "loss": 0.7319, "lr": 4.963384589619233e-05, "epoch": 0.05411499436302142, "percentage": 5.45, "elapsed_time": "0:15:41", "remaining_time": "4:31:54", "throughput": 13369.02, "total_tokens": 12582912}
7
+ {"current_steps": 7, "total_steps": 110, "loss": 0.7125, "lr": 4.9502064027309836e-05, "epoch": 0.06313416009019165, "percentage": 6.36, "elapsed_time": "0:18:15", "remaining_time": "4:28:42", "throughput": 13397.69, "total_tokens": 14680064}
8
+ {"current_steps": 8, "total_steps": 110, "loss": 0.7117, "lr": 4.935029792355834e-05, "epoch": 0.07215332581736189, "percentage": 7.27, "elapsed_time": "0:20:50", "remaining_time": "4:25:42", "throughput": 13417.34, "total_tokens": 16777216}
9
+ {"current_steps": 9, "total_steps": 110, "loss": 0.724, "lr": 4.917867136754893e-05, "epoch": 0.08117249154453213, "percentage": 8.18, "elapsed_time": "0:23:25", "remaining_time": "4:22:52", "throughput": 13429.19, "total_tokens": 18874368}
10
+ {"current_steps": 10, "total_steps": 110, "loss": 0.7144, "lr": 4.898732434036244e-05, "epoch": 0.09019165727170236, "percentage": 9.09, "elapsed_time": "0:26:00", "remaining_time": "4:20:02", "throughput": 13440.96, "total_tokens": 20971520}
11
+ {"current_steps": 11, "total_steps": 110, "loss": 0.697, "lr": 4.877641290737884e-05, "epoch": 0.0992108229988726, "percentage": 10.0, "elapsed_time": "0:28:35", "remaining_time": "4:17:18", "throughput": 13448.05, "total_tokens": 23068672}
12
+ {"current_steps": 12, "total_steps": 110, "loss": 0.7117, "lr": 4.854610909098812e-05, "epoch": 0.10822998872604284, "percentage": 10.91, "elapsed_time": "0:31:10", "remaining_time": "4:14:37", "throughput": 13452.88, "total_tokens": 25165824}
13
+ {"current_steps": 13, "total_steps": 110, "loss": 0.6996, "lr": 4.829660073028631e-05, "epoch": 0.11724915445321307, "percentage": 11.82, "elapsed_time": "0:33:45", "remaining_time": "4:11:55", "throughput": 13458.1, "total_tokens": 27262976}
14
+ {"current_steps": 14, "total_steps": 110, "loss": 0.7172, "lr": 4.802809132787125e-05, "epoch": 0.1262683201803833, "percentage": 12.73, "elapsed_time": "0:36:20", "remaining_time": "4:09:15", "throughput": 13461.87, "total_tokens": 29360128}
15
+ {"current_steps": 15, "total_steps": 110, "loss": 0.725, "lr": 4.774079988386296e-05, "epoch": 0.13528748590755355, "percentage": 13.64, "elapsed_time": "0:38:56", "remaining_time": "4:06:35", "throughput": 13465.5, "total_tokens": 31457280}
16
+ {"current_steps": 16, "total_steps": 110, "loss": 0.7073, "lr": 4.743496071728396e-05, "epoch": 0.14430665163472378, "percentage": 14.55, "elapsed_time": "0:41:31", "remaining_time": "4:03:55", "throughput": 13469.44, "total_tokens": 33554432}
17
+ {"current_steps": 17, "total_steps": 110, "loss": 0.7021, "lr": 4.711082327494536e-05, "epoch": 0.15332581736189402, "percentage": 15.45, "elapsed_time": "0:44:06", "remaining_time": "4:01:15", "throughput": 13473.17, "total_tokens": 35651584}
18
+ {"current_steps": 18, "total_steps": 110, "loss": 0.6894, "lr": 4.6768651927994434e-05, "epoch": 0.16234498308906425, "percentage": 16.36, "elapsed_time": "0:46:41", "remaining_time": "3:58:39", "throughput": 13473.99, "total_tokens": 37748736}
19
+ {"current_steps": 19, "total_steps": 110, "loss": 0.7031, "lr": 4.640872575628973e-05, "epoch": 0.1713641488162345, "percentage": 17.27, "elapsed_time": "0:49:17", "remaining_time": "3:56:06", "throughput": 13471.1, "total_tokens": 39845888}
20
+ {"current_steps": 20, "total_steps": 110, "loss": 0.6629, "lr": 4.6031338320779534e-05, "epoch": 0.18038331454340473, "percentage": 18.18, "elapsed_time": "0:51:52", "remaining_time": "3:53:27", "throughput": 13474.21, "total_tokens": 41943040}
21
+ {"current_steps": 21, "total_steps": 110, "loss": 0.6774, "lr": 4.563679742406935e-05, "epoch": 0.18940248027057496, "percentage": 19.09, "elapsed_time": "0:54:27", "remaining_time": "3:50:49", "throughput": 13476.95, "total_tokens": 44040192}
22
+ {"current_steps": 22, "total_steps": 110, "loss": 0.7041, "lr": 4.522542485937369e-05, "epoch": 0.1984216459977452, "percentage": 20.0, "elapsed_time": "0:57:02", "remaining_time": "3:48:09", "throughput": 13481.25, "total_tokens": 46137344}
23
+ {"current_steps": 23, "total_steps": 110, "loss": 0.6894, "lr": 4.479755614805688e-05, "epoch": 0.20744081172491544, "percentage": 20.91, "elapsed_time": "0:59:37", "remaining_time": "3:45:30", "throughput": 13484.61, "total_tokens": 48234496}
24
+ {"current_steps": 24, "total_steps": 110, "loss": 0.673, "lr": 4.4353540265977064e-05, "epoch": 0.21645997745208567, "percentage": 21.82, "elapsed_time": "1:02:11", "remaining_time": "3:42:51", "throughput": 13488.41, "total_tokens": 50331648}
25
+ {"current_steps": 25, "total_steps": 110, "loss": 0.6691, "lr": 4.389373935885646e-05, "epoch": 0.2254791431792559, "percentage": 22.73, "elapsed_time": "1:04:46", "remaining_time": "3:40:13", "throughput": 13490.63, "total_tokens": 52428800}
26
+ {"current_steps": 26, "total_steps": 110, "loss": 0.6794, "lr": 4.341852844691012e-05, "epoch": 0.23449830890642615, "percentage": 23.64, "elapsed_time": "1:07:20", "remaining_time": "3:37:34", "throughput": 13493.84, "total_tokens": 54525952}
27
+ {"current_steps": 27, "total_steps": 110, "loss": 0.6946, "lr": 4.292829511897409e-05, "epoch": 0.24351747463359638, "percentage": 24.55, "elapsed_time": "1:09:56", "remaining_time": "3:34:59", "throughput": 13493.72, "total_tokens": 56623104}
28
+ {"current_steps": 28, "total_steps": 110, "loss": 0.6939, "lr": 4.242343921638234e-05, "epoch": 0.2525366403607666, "percentage": 25.45, "elapsed_time": "1:12:31", "remaining_time": "3:32:22", "throughput": 13495.64, "total_tokens": 58720256}
29
+ {"current_steps": 29, "total_steps": 110, "loss": 0.6759, "lr": 4.1904372506850484e-05, "epoch": 0.2615558060879369, "percentage": 26.36, "elapsed_time": "1:15:05", "remaining_time": "3:29:44", "throughput": 13497.79, "total_tokens": 60817408}
30
+ {"current_steps": 30, "total_steps": 110, "loss": 0.6856, "lr": 4.137151834863213e-05, "epoch": 0.2705749718151071, "percentage": 27.27, "elapsed_time": "1:17:45", "remaining_time": "3:27:20", "throughput": 13485.48, "total_tokens": 62914560}
31
+ {"current_steps": 31, "total_steps": 110, "loss": 0.6753, "lr": 4.082531134522176e-05, "epoch": 0.27959413754227735, "percentage": 28.18, "elapsed_time": "1:20:23", "remaining_time": "3:24:53", "throughput": 13476.76, "total_tokens": 65011712}
32
+ {"current_steps": 32, "total_steps": 110, "loss": 0.6769, "lr": 4.0266196990885955e-05, "epoch": 0.28861330326944756, "percentage": 29.09, "elapsed_time": "1:23:02", "remaining_time": "3:22:25", "throughput": 13467.64, "total_tokens": 67108864}
33
+ {"current_steps": 33, "total_steps": 110, "loss": 0.6664, "lr": 3.969463130731183e-05, "epoch": 0.2976324689966178, "percentage": 30.0, "elapsed_time": "1:25:41", "remaining_time": "3:19:56", "throughput": 13460.91, "total_tokens": 69206016}
34
+ {"current_steps": 34, "total_steps": 110, "loss": 0.6383, "lr": 3.911108047166924e-05, "epoch": 0.30665163472378804, "percentage": 30.91, "elapsed_time": "1:28:18", "remaining_time": "3:17:24", "throughput": 13456.16, "total_tokens": 71303168}
35
+ {"current_steps": 35, "total_steps": 110, "loss": 0.6726, "lr": 3.851602043638994e-05, "epoch": 0.3156708004509583, "percentage": 31.82, "elapsed_time": "1:30:57", "remaining_time": "3:14:54", "throughput": 13449.18, "total_tokens": 73400320}
36
+ {"current_steps": 36, "total_steps": 110, "loss": 0.6612, "lr": 3.790993654097405e-05, "epoch": 0.3246899661781285, "percentage": 32.73, "elapsed_time": "1:33:35", "remaining_time": "3:12:23", "throughput": 13443.43, "total_tokens": 75497472}
37
+ {"current_steps": 37, "total_steps": 110, "loss": 0.6763, "lr": 3.72933231161401e-05, "epoch": 0.3337091319052988, "percentage": 33.64, "elapsed_time": "1:36:14", "remaining_time": "3:09:52", "throughput": 13438.4, "total_tokens": 77594624}
38
+ {"current_steps": 38, "total_steps": 110, "loss": 0.6533, "lr": 3.6666683080641846e-05, "epoch": 0.342728297632469, "percentage": 34.55, "elapsed_time": "1:38:52", "remaining_time": "3:07:20", "throughput": 13433.21, "total_tokens": 79691776}
39
+ {"current_steps": 39, "total_steps": 110, "loss": 0.6598, "lr": 3.603052753108053e-05, "epoch": 0.35174746335963925, "percentage": 35.45, "elapsed_time": "1:41:30", "remaining_time": "3:04:47", "throughput": 13429.21, "total_tokens": 81788928}
40
+ {"current_steps": 40, "total_steps": 110, "loss": 0.6801, "lr": 3.5385375325047166e-05, "epoch": 0.36076662908680945, "percentage": 36.36, "elapsed_time": "1:44:08", "remaining_time": "3:02:15", "throughput": 13424.38, "total_tokens": 83886080}
41
+ {"current_steps": 41, "total_steps": 110, "loss": 0.6668, "lr": 3.4731752657934794e-05, "epoch": 0.3697857948139797, "percentage": 37.27, "elapsed_time": "1:46:47", "remaining_time": "2:59:42", "throughput": 13420.03, "total_tokens": 85983232}
42
+ {"current_steps": 42, "total_steps": 110, "loss": 0.6756, "lr": 3.4070192633766025e-05, "epoch": 0.3788049605411499, "percentage": 38.18, "elapsed_time": "1:49:25", "remaining_time": "2:57:10", "throughput": 13414.75, "total_tokens": 88080384}
43
+ {"current_steps": 43, "total_steps": 110, "loss": 0.6589, "lr": 3.3401234830385756e-05, "epoch": 0.3878241262683202, "percentage": 39.09, "elapsed_time": "1:52:03", "remaining_time": "2:54:36", "throughput": 13411.37, "total_tokens": 90177536}
44
+ {"current_steps": 44, "total_steps": 110, "loss": 0.6435, "lr": 3.272542485937369e-05, "epoch": 0.3968432919954904, "percentage": 40.0, "elapsed_time": "1:54:41", "remaining_time": "2:52:02", "throughput": 13408.63, "total_tokens": 92274688}
45
+ {"current_steps": 45, "total_steps": 110, "loss": 0.6602, "lr": 3.2043313921035743e-05, "epoch": 0.40586245772266066, "percentage": 40.91, "elapsed_time": "1:57:19", "remaining_time": "2:49:28", "throughput": 13405.22, "total_tokens": 94371840}
46
+ {"current_steps": 46, "total_steps": 110, "loss": 0.648, "lr": 3.135545835483718e-05, "epoch": 0.41488162344983087, "percentage": 41.82, "elapsed_time": "1:59:58", "remaining_time": "2:46:54", "throughput": 13401.83, "total_tokens": 96468992}
47
+ {"current_steps": 47, "total_steps": 110, "loss": 0.6493, "lr": 3.0662419185644115e-05, "epoch": 0.42390078917700114, "percentage": 42.73, "elapsed_time": "2:02:36", "remaining_time": "2:44:20", "throughput": 13398.84, "total_tokens": 98566144}
48
+ {"current_steps": 48, "total_steps": 110, "loss": 0.6701, "lr": 2.996476166614364e-05, "epoch": 0.43291995490417134, "percentage": 43.64, "elapsed_time": "2:05:14", "remaining_time": "2:41:46", "throughput": 13395.76, "total_tokens": 100663296}
49
+ {"current_steps": 49, "total_steps": 110, "loss": 0.6674, "lr": 2.92630548158156e-05, "epoch": 0.4419391206313416, "percentage": 44.55, "elapsed_time": "2:07:52", "remaining_time": "2:39:12", "throughput": 13392.56, "total_tokens": 102760448}
50
+ {"current_steps": 50, "total_steps": 110, "loss": 0.6635, "lr": 2.8557870956832132e-05, "epoch": 0.4509582863585118, "percentage": 45.45, "elapsed_time": "2:10:31", "remaining_time": "2:36:37", "throughput": 13389.71, "total_tokens": 104857600}
51
+ {"current_steps": 51, "total_steps": 110, "loss": 0.6598, "lr": 2.7849785247263515e-05, "epoch": 0.4599774520856821, "percentage": 46.36, "elapsed_time": "2:13:09", "remaining_time": "2:34:02", "throughput": 13386.6, "total_tokens": 106954752}
52
+ {"current_steps": 52, "total_steps": 110, "loss": 0.6732, "lr": 2.7139375211970996e-05, "epoch": 0.4689966178128523, "percentage": 47.27, "elapsed_time": "2:15:48", "remaining_time": "2:31:28", "throughput": 13383.73, "total_tokens": 109051904}
53
+ {"current_steps": 53, "total_steps": 110, "loss": 0.6546, "lr": 2.6427220271569203e-05, "epoch": 0.47801578354002255, "percentage": 48.18, "elapsed_time": "2:18:26", "remaining_time": "2:28:53", "throughput": 13380.78, "total_tokens": 111149056}
54
+ {"current_steps": 54, "total_steps": 110, "loss": 0.6705, "lr": 2.5713901269842404e-05, "epoch": 0.48703494926719276, "percentage": 49.09, "elapsed_time": "2:21:04", "remaining_time": "2:26:17", "throughput": 13379.1, "total_tokens": 113246208}
55
+ {"current_steps": 55, "total_steps": 110, "loss": 0.6463, "lr": 2.5e-05, "epoch": 0.496054114994363, "percentage": 50.0, "elapsed_time": "2:23:42", "remaining_time": "2:23:42", "throughput": 13376.64, "total_tokens": 115343360}
56
+ {"current_steps": 56, "total_steps": 110, "loss": 0.6505, "lr": 2.42860987301576e-05, "epoch": 0.5050732807215332, "percentage": 50.91, "elapsed_time": "2:26:20", "remaining_time": "2:21:06", "throughput": 13375.59, "total_tokens": 117440512}
57
+ {"current_steps": 57, "total_steps": 110, "loss": 0.6524, "lr": 2.35727797284308e-05, "epoch": 0.5140924464487034, "percentage": 51.82, "elapsed_time": "2:28:58", "remaining_time": "2:18:30", "throughput": 13373.95, "total_tokens": 119537664}
58
+ {"current_steps": 58, "total_steps": 110, "loss": 0.6559, "lr": 2.2860624788029013e-05, "epoch": 0.5231116121758738, "percentage": 52.73, "elapsed_time": "2:31:36", "remaining_time": "2:15:55", "throughput": 13371.57, "total_tokens": 121634816}
59
+ {"current_steps": 59, "total_steps": 110, "loss": 0.6511, "lr": 2.2150214752736488e-05, "epoch": 0.532130777903044, "percentage": 53.64, "elapsed_time": "2:34:15", "remaining_time": "2:13:20", "throughput": 13368.89, "total_tokens": 123731968}
60
+ {"current_steps": 60, "total_steps": 110, "loss": 0.6457, "lr": 2.1442129043167874e-05, "epoch": 0.5411499436302142, "percentage": 54.55, "elapsed_time": "2:36:53", "remaining_time": "2:10:44", "throughput": 13366.3, "total_tokens": 125829120}
61
+ {"current_steps": 61, "total_steps": 110, "loss": 0.6492, "lr": 2.0736945184184405e-05, "epoch": 0.5501691093573844, "percentage": 55.45, "elapsed_time": "2:39:32", "remaining_time": "2:08:09", "throughput": 13364.48, "total_tokens": 127926272}
62
+ {"current_steps": 62, "total_steps": 110, "loss": 0.6539, "lr": 2.003523833385637e-05, "epoch": 0.5591882750845547, "percentage": 56.36, "elapsed_time": "2:42:09", "remaining_time": "2:05:32", "throughput": 13363.3, "total_tokens": 130023424}
63
+ {"current_steps": 63, "total_steps": 110, "loss": 0.6417, "lr": 1.9337580814355888e-05, "epoch": 0.5682074408117249, "percentage": 57.27, "elapsed_time": "2:44:47", "remaining_time": "2:02:56", "throughput": 13362.41, "total_tokens": 132120576}
64
+ {"current_steps": 64, "total_steps": 110, "loss": 0.6663, "lr": 1.8644541645162834e-05, "epoch": 0.5772266065388951, "percentage": 58.18, "elapsed_time": "2:47:25", "remaining_time": "2:00:20", "throughput": 13360.92, "total_tokens": 134217728}
65
+ {"current_steps": 65, "total_steps": 110, "loss": 0.6572, "lr": 1.795668607896426e-05, "epoch": 0.5862457722660653, "percentage": 59.09, "elapsed_time": "2:50:03", "remaining_time": "1:57:43", "throughput": 13360.07, "total_tokens": 136314880}
66
+ {"current_steps": 66, "total_steps": 110, "loss": 0.6825, "lr": 1.7274575140626318e-05, "epoch": 0.5952649379932357, "percentage": 60.0, "elapsed_time": "2:52:41", "remaining_time": "1:55:07", "throughput": 13358.01, "total_tokens": 138412032}
67
+ {"current_steps": 67, "total_steps": 110, "loss": 0.6509, "lr": 1.6598765169614243e-05, "epoch": 0.6042841037204059, "percentage": 60.91, "elapsed_time": "2:55:19", "remaining_time": "1:52:31", "throughput": 13356.51, "total_tokens": 140509184}
68
+ {"current_steps": 68, "total_steps": 110, "loss": 0.6619, "lr": 1.5929807366233977e-05, "epoch": 0.6133032694475761, "percentage": 61.82, "elapsed_time": "2:57:57", "remaining_time": "1:49:55", "throughput": 13355.52, "total_tokens": 142606336}
69
+ {"current_steps": 69, "total_steps": 110, "loss": 0.6759, "lr": 1.5268247342065215e-05, "epoch": 0.6223224351747464, "percentage": 62.73, "elapsed_time": "3:00:36", "remaining_time": "1:47:19", "throughput": 13352.79, "total_tokens": 144703488}
70
+ {"current_steps": 70, "total_steps": 110, "loss": 0.6568, "lr": 1.4614624674952842e-05, "epoch": 0.6313416009019166, "percentage": 63.64, "elapsed_time": "3:03:14", "remaining_time": "1:44:42", "throughput": 13352.37, "total_tokens": 146800640}
71
+ {"current_steps": 71, "total_steps": 110, "loss": 0.6472, "lr": 1.3969472468919461e-05, "epoch": 0.6403607666290868, "percentage": 64.55, "elapsed_time": "3:05:52", "remaining_time": "1:42:05", "throughput": 13351.5, "total_tokens": 148897792}
72
+ {"current_steps": 72, "total_steps": 110, "loss": 0.6473, "lr": 1.3333316919358157e-05, "epoch": 0.649379932356257, "percentage": 65.45, "elapsed_time": "3:08:31", "remaining_time": "1:39:29", "throughput": 13349.03, "total_tokens": 150994944}
73
+ {"current_steps": 73, "total_steps": 110, "loss": 0.6485, "lr": 1.2706676883859903e-05, "epoch": 0.6583990980834273, "percentage": 66.36, "elapsed_time": "3:11:09", "remaining_time": "1:36:53", "throughput": 13347.43, "total_tokens": 153092096}
74
+ {"current_steps": 74, "total_steps": 110, "loss": 0.6544, "lr": 1.2090063459025955e-05, "epoch": 0.6674182638105975, "percentage": 67.27, "elapsed_time": "3:13:48", "remaining_time": "1:34:16", "throughput": 13345.97, "total_tokens": 155189248}
75
+ {"current_steps": 75, "total_steps": 110, "loss": 0.6763, "lr": 1.148397956361007e-05, "epoch": 0.6764374295377678, "percentage": 68.18, "elapsed_time": "3:16:26", "remaining_time": "1:31:40", "throughput": 13344.93, "total_tokens": 157286400}
76
+ {"current_steps": 76, "total_steps": 110, "loss": 0.6406, "lr": 1.0888919528330777e-05, "epoch": 0.685456595264938, "percentage": 69.09, "elapsed_time": "3:19:05", "remaining_time": "1:29:04", "throughput": 13342.47, "total_tokens": 159383552}
77
+ {"current_steps": 77, "total_steps": 110, "loss": 0.6502, "lr": 1.0305368692688174e-05, "epoch": 0.6944757609921083, "percentage": 70.0, "elapsed_time": "3:21:44", "remaining_time": "1:26:27", "throughput": 13341.02, "total_tokens": 161480704}
78
+ {"current_steps": 78, "total_steps": 110, "loss": 0.6495, "lr": 9.733803009114045e-06, "epoch": 0.7034949267192785, "percentage": 70.91, "elapsed_time": "3:24:22", "remaining_time": "1:23:50", "throughput": 13339.92, "total_tokens": 163577856}
79
+ {"current_steps": 79, "total_steps": 110, "loss": 0.6469, "lr": 9.174688654778243e-06, "epoch": 0.7125140924464487, "percentage": 71.82, "elapsed_time": "3:27:00", "remaining_time": "1:21:13", "throughput": 13339.19, "total_tokens": 165675008}
80
+ {"current_steps": 80, "total_steps": 110, "loss": 0.6642, "lr": 8.628481651367876e-06, "epoch": 0.7215332581736189, "percentage": 72.73, "elapsed_time": "3:29:38", "remaining_time": "1:18:37", "throughput": 13337.79, "total_tokens": 167772160}
81
+ {"current_steps": 81, "total_steps": 110, "loss": 0.6598, "lr": 8.09562749314952e-06, "epoch": 0.7305524239007892, "percentage": 73.64, "elapsed_time": "3:32:16", "remaining_time": "1:16:00", "throughput": 13336.77, "total_tokens": 169869312}
82
+ {"current_steps": 82, "total_steps": 110, "loss": 0.6461, "lr": 7.576560783617668e-06, "epoch": 0.7395715896279594, "percentage": 74.55, "elapsed_time": "3:34:55", "remaining_time": "1:13:23", "throughput": 13335.06, "total_tokens": 171966464}
83
+ {"current_steps": 83, "total_steps": 110, "loss": 0.6706, "lr": 7.071704881025915e-06, "epoch": 0.7485907553551296, "percentage": 75.45, "elapsed_time": "3:37:34", "remaining_time": "1:10:46", "throughput": 13333.27, "total_tokens": 174063616}
84
+ {"current_steps": 84, "total_steps": 110, "loss": 0.6768, "lr": 6.5814715530898745e-06, "epoch": 0.7576099210822999, "percentage": 76.36, "elapsed_time": "3:40:12", "remaining_time": "1:08:09", "throughput": 13332.46, "total_tokens": 176160768}
85
+ {"current_steps": 85, "total_steps": 110, "loss": 0.6446, "lr": 6.106260641143546e-06, "epoch": 0.7666290868094702, "percentage": 77.27, "elapsed_time": "3:42:50", "remaining_time": "1:05:32", "throughput": 13331.91, "total_tokens": 178257920}
86
+ {"current_steps": 86, "total_steps": 110, "loss": 0.6393, "lr": 5.646459734022938e-06, "epoch": 0.7756482525366404, "percentage": 78.18, "elapsed_time": "3:45:28", "remaining_time": "1:02:55", "throughput": 13331.08, "total_tokens": 180355072}
87
+ {"current_steps": 87, "total_steps": 110, "loss": 0.6585, "lr": 5.202443851943126e-06, "epoch": 0.7846674182638106, "percentage": 79.09, "elapsed_time": "3:48:06", "remaining_time": "1:00:18", "throughput": 13330.39, "total_tokens": 182452224}
88
+ {"current_steps": 88, "total_steps": 110, "loss": 0.6393, "lr": 4.7745751406263165e-06, "epoch": 0.7936865839909808, "percentage": 80.0, "elapsed_time": "3:50:45", "remaining_time": "0:57:41", "throughput": 13329.42, "total_tokens": 184549376}
89
+ {"current_steps": 89, "total_steps": 110, "loss": 0.6613, "lr": 4.36320257593065e-06, "epoch": 0.8027057497181511, "percentage": 80.91, "elapsed_time": "3:53:22", "remaining_time": "0:55:04", "throughput": 13329.14, "total_tokens": 186646528}
90
+ {"current_steps": 90, "total_steps": 110, "loss": 0.6631, "lr": 3.968661679220468e-06, "epoch": 0.8117249154453213, "percentage": 81.82, "elapsed_time": "3:56:02", "remaining_time": "0:52:27", "throughput": 13327.42, "total_tokens": 188743680}
91
+ {"current_steps": 91, "total_steps": 110, "loss": 0.6356, "lr": 3.591274243710277e-06, "epoch": 0.8207440811724915, "percentage": 82.73, "elapsed_time": "3:58:40", "remaining_time": "0:49:50", "throughput": 13326.22, "total_tokens": 190840832}
92
+ {"current_steps": 92, "total_steps": 110, "loss": 0.6475, "lr": 3.2313480720055745e-06, "epoch": 0.8297632468996617, "percentage": 83.64, "elapsed_time": "4:01:19", "remaining_time": "0:47:12", "throughput": 13325.12, "total_tokens": 192937984}
93
+ {"current_steps": 93, "total_steps": 110, "loss": 0.6387, "lr": 2.889176725054643e-06, "epoch": 0.8387824126268321, "percentage": 84.55, "elapsed_time": "4:03:57", "remaining_time": "0:44:35", "throughput": 13324.1, "total_tokens": 195035136}
94
+ {"current_steps": 94, "total_steps": 110, "loss": 0.6533, "lr": 2.565039282716045e-06, "epoch": 0.8478015783540023, "percentage": 85.45, "elapsed_time": "4:06:36", "remaining_time": "0:41:58", "throughput": 13323.33, "total_tokens": 197132288}
95
+ {"current_steps": 95, "total_steps": 110, "loss": 0.6606, "lr": 2.2592001161370392e-06, "epoch": 0.8568207440811725, "percentage": 86.36, "elapsed_time": "4:09:14", "remaining_time": "0:39:21", "throughput": 13322.67, "total_tokens": 199229440}
96
+ {"current_steps": 96, "total_steps": 110, "loss": 0.6667, "lr": 1.97190867212875e-06, "epoch": 0.8658399098083427, "percentage": 87.27, "elapsed_time": "4:11:52", "remaining_time": "0:36:43", "throughput": 13322.1, "total_tokens": 201326592}
97
+ {"current_steps": 97, "total_steps": 110, "loss": 0.6599, "lr": 1.703399269713693e-06, "epoch": 0.874859075535513, "percentage": 88.18, "elapsed_time": "4:14:30", "remaining_time": "0:34:06", "throughput": 13321.16, "total_tokens": 203423744}
98
+ {"current_steps": 98, "total_steps": 110, "loss": 0.6499, "lr": 1.4538909090118846e-06, "epoch": 0.8838782412626832, "percentage": 89.09, "elapsed_time": "4:17:09", "remaining_time": "0:31:29", "throughput": 13319.93, "total_tokens": 205520896}
99
+ {"current_steps": 99, "total_steps": 110, "loss": 0.649, "lr": 1.2235870926211619e-06, "epoch": 0.8928974069898534, "percentage": 90.0, "elapsed_time": "4:19:47", "remaining_time": "0:28:51", "throughput": 13319.17, "total_tokens": 207618048}
100
+ {"current_steps": 100, "total_steps": 110, "loss": 0.6551, "lr": 1.0126756596375686e-06, "epoch": 0.9019165727170236, "percentage": 90.91, "elapsed_time": "4:22:26", "remaining_time": "0:26:14", "throughput": 13318.33, "total_tokens": 209715200}
101
+ {"current_steps": 101, "total_steps": 110, "loss": 0.668, "lr": 8.213286324510738e-07, "epoch": 0.910935738444194, "percentage": 91.82, "elapsed_time": "4:25:04", "remaining_time": "0:23:37", "throughput": 13317.49, "total_tokens": 211812352}
102
+ {"current_steps": 102, "total_steps": 110, "loss": 0.6505, "lr": 6.497020764416633e-07, "epoch": 0.9199549041713642, "percentage": 92.73, "elapsed_time": "4:27:43", "remaining_time": "0:20:59", "throughput": 13316.86, "total_tokens": 213909504}
103
+ {"current_steps": 103, "total_steps": 110, "loss": 0.6504, "lr": 4.979359726901639e-07, "epoch": 0.9289740698985344, "percentage": 93.64, "elapsed_time": "4:30:20", "remaining_time": "0:18:22", "throughput": 13317.27, "total_tokens": 216006656}
104
+ {"current_steps": 104, "total_steps": 110, "loss": 0.6504, "lr": 3.6615410380767544e-07, "epoch": 0.9379932356257046, "percentage": 94.55, "elapsed_time": "4:32:57", "remaining_time": "0:15:44", "throughput": 13317.01, "total_tokens": 218103808}
105
+ {"current_steps": 105, "total_steps": 110, "loss": 0.6491, "lr": 2.544639529766829e-07, "epoch": 0.9470124013528749, "percentage": 95.45, "elapsed_time": "4:35:36", "remaining_time": "0:13:07", "throughput": 13316.43, "total_tokens": 220200960}
106
+ {"current_steps": 106, "total_steps": 110, "loss": 0.6449, "lr": 1.6295661628624447e-07, "epoch": 0.9560315670800451, "percentage": 96.36, "elapsed_time": "4:38:13", "remaining_time": "0:10:29", "throughput": 13316.07, "total_tokens": 222298112}
107
+ {"current_steps": 107, "total_steps": 110, "loss": 0.6729, "lr": 9.170672843271666e-08, "epoch": 0.9650507328072153, "percentage": 97.27, "elapsed_time": "4:40:51", "remaining_time": "0:07:52", "throughput": 13315.82, "total_tokens": 224395264}
108
+ {"current_steps": 108, "total_steps": 110, "loss": 0.6308, "lr": 4.07724018466088e-08, "epoch": 0.9740698985343855, "percentage": 98.18, "elapsed_time": "4:43:29", "remaining_time": "0:05:14", "throughput": 13315.41, "total_tokens": 226492416}
109
+ {"current_steps": 109, "total_steps": 110, "loss": 0.6695, "lr": 1.0195179295269252e-08, "epoch": 0.9830890642615558, "percentage": 99.09, "elapsed_time": "4:46:08", "remaining_time": "0:02:37", "throughput": 13314.76, "total_tokens": 228589568}
110
+ {"current_steps": 110, "total_steps": 110, "loss": 0.6467, "lr": 0.0, "epoch": 0.992108229988726, "percentage": 100.0, "elapsed_time": "4:48:46", "remaining_time": "0:00:00", "throughput": 13314.02, "total_tokens": 230686720}
111
+ {"current_steps": 110, "total_steps": 110, "epoch": 0.992108229988726, "percentage": 100.0, "elapsed_time": "4:49:11", "remaining_time": "0:00:00", "throughput": 13294.64, "total_tokens": 230686720}
trainer_state.json ADDED
@@ -0,0 +1,923 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.992108229988726,
5
+ "eval_steps": 500,
6
+ "global_step": 110,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009019165727170236,
13
+ "grad_norm": 0.8173778653144836,
14
+ "learning_rate": 4.9989804820704735e-05,
15
+ "loss": 0.8968,
16
+ "num_input_tokens_seen": 2097152,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.018038331454340473,
21
+ "grad_norm": 0.5661506056785583,
22
+ "learning_rate": 4.995922759815339e-05,
23
+ "loss": 0.8202,
24
+ "num_input_tokens_seen": 4194304,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.02705749718151071,
29
+ "grad_norm": 0.4142468571662903,
30
+ "learning_rate": 4.9908293271567286e-05,
31
+ "loss": 0.7783,
32
+ "num_input_tokens_seen": 6291456,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.036076662908680945,
37
+ "grad_norm": 0.2738800048828125,
38
+ "learning_rate": 4.9837043383713753e-05,
39
+ "loss": 0.7642,
40
+ "num_input_tokens_seen": 8388608,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.04509582863585118,
45
+ "grad_norm": 0.2011900395154953,
46
+ "learning_rate": 4.9745536047023324e-05,
47
+ "loss": 0.7475,
48
+ "num_input_tokens_seen": 10485760,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.05411499436302142,
53
+ "grad_norm": 0.161564901471138,
54
+ "learning_rate": 4.963384589619233e-05,
55
+ "loss": 0.7319,
56
+ "num_input_tokens_seen": 12582912,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.06313416009019165,
61
+ "grad_norm": 0.14298053085803986,
62
+ "learning_rate": 4.9502064027309836e-05,
63
+ "loss": 0.7125,
64
+ "num_input_tokens_seen": 14680064,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.07215332581736189,
69
+ "grad_norm": 0.14268024265766144,
70
+ "learning_rate": 4.935029792355834e-05,
71
+ "loss": 0.7117,
72
+ "num_input_tokens_seen": 16777216,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.08117249154453213,
77
+ "grad_norm": 0.1712426245212555,
78
+ "learning_rate": 4.917867136754893e-05,
79
+ "loss": 0.724,
80
+ "num_input_tokens_seen": 18874368,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.09019165727170236,
85
+ "grad_norm": 0.15666206181049347,
86
+ "learning_rate": 4.898732434036244e-05,
87
+ "loss": 0.7144,
88
+ "num_input_tokens_seen": 20971520,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.0992108229988726,
93
+ "grad_norm": 0.139165461063385,
94
+ "learning_rate": 4.877641290737884e-05,
95
+ "loss": 0.697,
96
+ "num_input_tokens_seen": 23068672,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.10822998872604284,
101
+ "grad_norm": 0.15043741464614868,
102
+ "learning_rate": 4.854610909098812e-05,
103
+ "loss": 0.7117,
104
+ "num_input_tokens_seen": 25165824,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.11724915445321307,
109
+ "grad_norm": 0.13478276133537292,
110
+ "learning_rate": 4.829660073028631e-05,
111
+ "loss": 0.6996,
112
+ "num_input_tokens_seen": 27262976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.1262683201803833,
117
+ "grad_norm": 0.12838861346244812,
118
+ "learning_rate": 4.802809132787125e-05,
119
+ "loss": 0.7172,
120
+ "num_input_tokens_seen": 29360128,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.13528748590755355,
125
+ "grad_norm": 0.11803996562957764,
126
+ "learning_rate": 4.774079988386296e-05,
127
+ "loss": 0.725,
128
+ "num_input_tokens_seen": 31457280,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.14430665163472378,
133
+ "grad_norm": 0.11841780692338943,
134
+ "learning_rate": 4.743496071728396e-05,
135
+ "loss": 0.7073,
136
+ "num_input_tokens_seen": 33554432,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.15332581736189402,
141
+ "grad_norm": 0.11901742964982986,
142
+ "learning_rate": 4.711082327494536e-05,
143
+ "loss": 0.7021,
144
+ "num_input_tokens_seen": 35651584,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.16234498308906425,
149
+ "grad_norm": 0.11239754408597946,
150
+ "learning_rate": 4.6768651927994434e-05,
151
+ "loss": 0.6894,
152
+ "num_input_tokens_seen": 37748736,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.1713641488162345,
157
+ "grad_norm": 0.10254418104887009,
158
+ "learning_rate": 4.640872575628973e-05,
159
+ "loss": 0.7031,
160
+ "num_input_tokens_seen": 39845888,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.18038331454340473,
165
+ "grad_norm": 0.09802790731191635,
166
+ "learning_rate": 4.6031338320779534e-05,
167
+ "loss": 0.6629,
168
+ "num_input_tokens_seen": 41943040,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.18940248027057496,
173
+ "grad_norm": 0.0993066355586052,
174
+ "learning_rate": 4.563679742406935e-05,
175
+ "loss": 0.6774,
176
+ "num_input_tokens_seen": 44040192,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.1984216459977452,
181
+ "grad_norm": 0.09300491958856583,
182
+ "learning_rate": 4.522542485937369e-05,
183
+ "loss": 0.7041,
184
+ "num_input_tokens_seen": 46137344,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.20744081172491544,
189
+ "grad_norm": 0.08633296191692352,
190
+ "learning_rate": 4.479755614805688e-05,
191
+ "loss": 0.6894,
192
+ "num_input_tokens_seen": 48234496,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.21645997745208567,
197
+ "grad_norm": 0.0841744914650917,
198
+ "learning_rate": 4.4353540265977064e-05,
199
+ "loss": 0.673,
200
+ "num_input_tokens_seen": 50331648,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.2254791431792559,
205
+ "grad_norm": 0.09111865609884262,
206
+ "learning_rate": 4.389373935885646e-05,
207
+ "loss": 0.6691,
208
+ "num_input_tokens_seen": 52428800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.23449830890642615,
213
+ "grad_norm": 0.08103901892900467,
214
+ "learning_rate": 4.341852844691012e-05,
215
+ "loss": 0.6794,
216
+ "num_input_tokens_seen": 54525952,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.24351747463359638,
221
+ "grad_norm": 0.08423160016536713,
222
+ "learning_rate": 4.292829511897409e-05,
223
+ "loss": 0.6946,
224
+ "num_input_tokens_seen": 56623104,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.2525366403607666,
229
+ "grad_norm": 0.09218155592679977,
230
+ "learning_rate": 4.242343921638234e-05,
231
+ "loss": 0.6939,
232
+ "num_input_tokens_seen": 58720256,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.2615558060879369,
237
+ "grad_norm": 0.07839576154947281,
238
+ "learning_rate": 4.1904372506850484e-05,
239
+ "loss": 0.6759,
240
+ "num_input_tokens_seen": 60817408,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.2705749718151071,
245
+ "grad_norm": 0.08427103608846664,
246
+ "learning_rate": 4.137151834863213e-05,
247
+ "loss": 0.6856,
248
+ "num_input_tokens_seen": 62914560,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.27959413754227735,
253
+ "grad_norm": 0.08769369125366211,
254
+ "learning_rate": 4.082531134522176e-05,
255
+ "loss": 0.6753,
256
+ "num_input_tokens_seen": 65011712,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.28861330326944756,
261
+ "grad_norm": 0.09144359081983566,
262
+ "learning_rate": 4.0266196990885955e-05,
263
+ "loss": 0.6769,
264
+ "num_input_tokens_seen": 67108864,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.2976324689966178,
269
+ "grad_norm": 0.08329298347234726,
270
+ "learning_rate": 3.969463130731183e-05,
271
+ "loss": 0.6664,
272
+ "num_input_tokens_seen": 69206016,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.30665163472378804,
277
+ "grad_norm": 0.07759370654821396,
278
+ "learning_rate": 3.911108047166924e-05,
279
+ "loss": 0.6383,
280
+ "num_input_tokens_seen": 71303168,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.3156708004509583,
285
+ "grad_norm": 0.07686188071966171,
286
+ "learning_rate": 3.851602043638994e-05,
287
+ "loss": 0.6726,
288
+ "num_input_tokens_seen": 73400320,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.3246899661781285,
293
+ "grad_norm": 0.0853535607457161,
294
+ "learning_rate": 3.790993654097405e-05,
295
+ "loss": 0.6612,
296
+ "num_input_tokens_seen": 75497472,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.3337091319052988,
301
+ "grad_norm": 0.08194194734096527,
302
+ "learning_rate": 3.72933231161401e-05,
303
+ "loss": 0.6763,
304
+ "num_input_tokens_seen": 77594624,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.342728297632469,
309
+ "grad_norm": 0.0810617133975029,
310
+ "learning_rate": 3.6666683080641846e-05,
311
+ "loss": 0.6533,
312
+ "num_input_tokens_seen": 79691776,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.35174746335963925,
317
+ "grad_norm": 0.08145678043365479,
318
+ "learning_rate": 3.603052753108053e-05,
319
+ "loss": 0.6598,
320
+ "num_input_tokens_seen": 81788928,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.36076662908680945,
325
+ "grad_norm": 0.07560884952545166,
326
+ "learning_rate": 3.5385375325047166e-05,
327
+ "loss": 0.6801,
328
+ "num_input_tokens_seen": 83886080,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.3697857948139797,
333
+ "grad_norm": 0.06700561195611954,
334
+ "learning_rate": 3.4731752657934794e-05,
335
+ "loss": 0.6668,
336
+ "num_input_tokens_seen": 85983232,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.3788049605411499,
341
+ "grad_norm": 0.076134592294693,
342
+ "learning_rate": 3.4070192633766025e-05,
343
+ "loss": 0.6756,
344
+ "num_input_tokens_seen": 88080384,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.3878241262683202,
349
+ "grad_norm": 0.06908991187810898,
350
+ "learning_rate": 3.3401234830385756e-05,
351
+ "loss": 0.6589,
352
+ "num_input_tokens_seen": 90177536,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.3968432919954904,
357
+ "grad_norm": 0.07035559415817261,
358
+ "learning_rate": 3.272542485937369e-05,
359
+ "loss": 0.6435,
360
+ "num_input_tokens_seen": 92274688,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.40586245772266066,
365
+ "grad_norm": 0.06883817166090012,
366
+ "learning_rate": 3.2043313921035743e-05,
367
+ "loss": 0.6602,
368
+ "num_input_tokens_seen": 94371840,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.41488162344983087,
373
+ "grad_norm": 0.06745729595422745,
374
+ "learning_rate": 3.135545835483718e-05,
375
+ "loss": 0.648,
376
+ "num_input_tokens_seen": 96468992,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.42390078917700114,
381
+ "grad_norm": 0.06895168870687485,
382
+ "learning_rate": 3.0662419185644115e-05,
383
+ "loss": 0.6493,
384
+ "num_input_tokens_seen": 98566144,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.43291995490417134,
389
+ "grad_norm": 0.06701447814702988,
390
+ "learning_rate": 2.996476166614364e-05,
391
+ "loss": 0.6701,
392
+ "num_input_tokens_seen": 100663296,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.4419391206313416,
397
+ "grad_norm": 0.07372091710567474,
398
+ "learning_rate": 2.92630548158156e-05,
399
+ "loss": 0.6674,
400
+ "num_input_tokens_seen": 102760448,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.4509582863585118,
405
+ "grad_norm": 0.07131503522396088,
406
+ "learning_rate": 2.8557870956832132e-05,
407
+ "loss": 0.6635,
408
+ "num_input_tokens_seen": 104857600,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.4599774520856821,
413
+ "grad_norm": 0.0702953040599823,
414
+ "learning_rate": 2.7849785247263515e-05,
415
+ "loss": 0.6598,
416
+ "num_input_tokens_seen": 106954752,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.4689966178128523,
421
+ "grad_norm": 0.06502864509820938,
422
+ "learning_rate": 2.7139375211970996e-05,
423
+ "loss": 0.6732,
424
+ "num_input_tokens_seen": 109051904,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.47801578354002255,
429
+ "grad_norm": 0.06253138929605484,
430
+ "learning_rate": 2.6427220271569203e-05,
431
+ "loss": 0.6546,
432
+ "num_input_tokens_seen": 111149056,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.48703494926719276,
437
+ "grad_norm": 0.06724034994840622,
438
+ "learning_rate": 2.5713901269842404e-05,
439
+ "loss": 0.6705,
440
+ "num_input_tokens_seen": 113246208,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.496054114994363,
445
+ "grad_norm": 0.06660095602273941,
446
+ "learning_rate": 2.5e-05,
447
+ "loss": 0.6463,
448
+ "num_input_tokens_seen": 115343360,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.5050732807215332,
453
+ "grad_norm": 0.06747590005397797,
454
+ "learning_rate": 2.42860987301576e-05,
455
+ "loss": 0.6505,
456
+ "num_input_tokens_seen": 117440512,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.5140924464487034,
461
+ "grad_norm": 0.07006718963384628,
462
+ "learning_rate": 2.35727797284308e-05,
463
+ "loss": 0.6524,
464
+ "num_input_tokens_seen": 119537664,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.5231116121758738,
469
+ "grad_norm": 0.06662806868553162,
470
+ "learning_rate": 2.2860624788029013e-05,
471
+ "loss": 0.6559,
472
+ "num_input_tokens_seen": 121634816,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.532130777903044,
477
+ "grad_norm": 0.06757567077875137,
478
+ "learning_rate": 2.2150214752736488e-05,
479
+ "loss": 0.6511,
480
+ "num_input_tokens_seen": 123731968,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.5411499436302142,
485
+ "grad_norm": 0.07193508744239807,
486
+ "learning_rate": 2.1442129043167874e-05,
487
+ "loss": 0.6457,
488
+ "num_input_tokens_seen": 125829120,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.5501691093573844,
493
+ "grad_norm": 0.06620261073112488,
494
+ "learning_rate": 2.0736945184184405e-05,
495
+ "loss": 0.6492,
496
+ "num_input_tokens_seen": 127926272,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.5591882750845547,
501
+ "grad_norm": 0.06846100836992264,
502
+ "learning_rate": 2.003523833385637e-05,
503
+ "loss": 0.6539,
504
+ "num_input_tokens_seen": 130023424,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.5682074408117249,
509
+ "grad_norm": 0.06885959208011627,
510
+ "learning_rate": 1.9337580814355888e-05,
511
+ "loss": 0.6417,
512
+ "num_input_tokens_seen": 132120576,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.5772266065388951,
517
+ "grad_norm": 0.06715461611747742,
518
+ "learning_rate": 1.8644541645162834e-05,
519
+ "loss": 0.6663,
520
+ "num_input_tokens_seen": 134217728,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.5862457722660653,
525
+ "grad_norm": 0.06593496352434158,
526
+ "learning_rate": 1.795668607896426e-05,
527
+ "loss": 0.6572,
528
+ "num_input_tokens_seen": 136314880,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.5952649379932357,
533
+ "grad_norm": 0.06741371005773544,
534
+ "learning_rate": 1.7274575140626318e-05,
535
+ "loss": 0.6825,
536
+ "num_input_tokens_seen": 138412032,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.6042841037204059,
541
+ "grad_norm": 0.06627509742975235,
542
+ "learning_rate": 1.6598765169614243e-05,
543
+ "loss": 0.6509,
544
+ "num_input_tokens_seen": 140509184,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.6133032694475761,
549
+ "grad_norm": 0.06725791096687317,
550
+ "learning_rate": 1.5929807366233977e-05,
551
+ "loss": 0.6619,
552
+ "num_input_tokens_seen": 142606336,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.6223224351747464,
557
+ "grad_norm": 0.06500604748725891,
558
+ "learning_rate": 1.5268247342065215e-05,
559
+ "loss": 0.6759,
560
+ "num_input_tokens_seen": 144703488,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.6313416009019166,
565
+ "grad_norm": 0.07281672209501266,
566
+ "learning_rate": 1.4614624674952842e-05,
567
+ "loss": 0.6568,
568
+ "num_input_tokens_seen": 146800640,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.6403607666290868,
573
+ "grad_norm": 0.0661671832203865,
574
+ "learning_rate": 1.3969472468919461e-05,
575
+ "loss": 0.6472,
576
+ "num_input_tokens_seen": 148897792,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.649379932356257,
581
+ "grad_norm": 0.06678120791912079,
582
+ "learning_rate": 1.3333316919358157e-05,
583
+ "loss": 0.6473,
584
+ "num_input_tokens_seen": 150994944,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.6583990980834273,
589
+ "grad_norm": 0.06216076388955116,
590
+ "learning_rate": 1.2706676883859903e-05,
591
+ "loss": 0.6485,
592
+ "num_input_tokens_seen": 153092096,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.6674182638105975,
597
+ "grad_norm": 0.06877604126930237,
598
+ "learning_rate": 1.2090063459025955e-05,
599
+ "loss": 0.6544,
600
+ "num_input_tokens_seen": 155189248,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.6764374295377678,
605
+ "grad_norm": 0.06808489561080933,
606
+ "learning_rate": 1.148397956361007e-05,
607
+ "loss": 0.6763,
608
+ "num_input_tokens_seen": 157286400,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.685456595264938,
613
+ "grad_norm": 0.06282905489206314,
614
+ "learning_rate": 1.0888919528330777e-05,
615
+ "loss": 0.6406,
616
+ "num_input_tokens_seen": 159383552,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.6944757609921083,
621
+ "grad_norm": 0.06371884793043137,
622
+ "learning_rate": 1.0305368692688174e-05,
623
+ "loss": 0.6502,
624
+ "num_input_tokens_seen": 161480704,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 0.7034949267192785,
629
+ "grad_norm": 0.06734833121299744,
630
+ "learning_rate": 9.733803009114045e-06,
631
+ "loss": 0.6495,
632
+ "num_input_tokens_seen": 163577856,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 0.7125140924464487,
637
+ "grad_norm": 0.06442791223526001,
638
+ "learning_rate": 9.174688654778243e-06,
639
+ "loss": 0.6469,
640
+ "num_input_tokens_seen": 165675008,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 0.7215332581736189,
645
+ "grad_norm": 0.06670290976762772,
646
+ "learning_rate": 8.628481651367876e-06,
647
+ "loss": 0.6642,
648
+ "num_input_tokens_seen": 167772160,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.7305524239007892,
653
+ "grad_norm": 0.06524420529603958,
654
+ "learning_rate": 8.09562749314952e-06,
655
+ "loss": 0.6598,
656
+ "num_input_tokens_seen": 169869312,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 0.7395715896279594,
661
+ "grad_norm": 0.06147584691643715,
662
+ "learning_rate": 7.576560783617668e-06,
663
+ "loss": 0.6461,
664
+ "num_input_tokens_seen": 171966464,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 0.7485907553551296,
669
+ "grad_norm": 0.06680367887020111,
670
+ "learning_rate": 7.071704881025915e-06,
671
+ "loss": 0.6706,
672
+ "num_input_tokens_seen": 174063616,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 0.7576099210822999,
677
+ "grad_norm": 0.0657731294631958,
678
+ "learning_rate": 6.5814715530898745e-06,
679
+ "loss": 0.6768,
680
+ "num_input_tokens_seen": 176160768,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.7666290868094702,
685
+ "grad_norm": 0.06921912729740143,
686
+ "learning_rate": 6.106260641143546e-06,
687
+ "loss": 0.6446,
688
+ "num_input_tokens_seen": 178257920,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 0.7756482525366404,
693
+ "grad_norm": 0.06477085500955582,
694
+ "learning_rate": 5.646459734022938e-06,
695
+ "loss": 0.6393,
696
+ "num_input_tokens_seen": 180355072,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 0.7846674182638106,
701
+ "grad_norm": 0.06648603081703186,
702
+ "learning_rate": 5.202443851943126e-06,
703
+ "loss": 0.6585,
704
+ "num_input_tokens_seen": 182452224,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 0.7936865839909808,
709
+ "grad_norm": 0.06899042427539825,
710
+ "learning_rate": 4.7745751406263165e-06,
711
+ "loss": 0.6393,
712
+ "num_input_tokens_seen": 184549376,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.8027057497181511,
717
+ "grad_norm": 0.06467007100582123,
718
+ "learning_rate": 4.36320257593065e-06,
719
+ "loss": 0.6613,
720
+ "num_input_tokens_seen": 186646528,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 0.8117249154453213,
725
+ "grad_norm": 0.06616765260696411,
726
+ "learning_rate": 3.968661679220468e-06,
727
+ "loss": 0.6631,
728
+ "num_input_tokens_seen": 188743680,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 0.8207440811724915,
733
+ "grad_norm": 0.06439518183469772,
734
+ "learning_rate": 3.591274243710277e-06,
735
+ "loss": 0.6356,
736
+ "num_input_tokens_seen": 190840832,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 0.8297632468996617,
741
+ "grad_norm": 0.06294091790914536,
742
+ "learning_rate": 3.2313480720055745e-06,
743
+ "loss": 0.6475,
744
+ "num_input_tokens_seen": 192937984,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.8387824126268321,
749
+ "grad_norm": 0.06395729631185532,
750
+ "learning_rate": 2.889176725054643e-06,
751
+ "loss": 0.6387,
752
+ "num_input_tokens_seen": 195035136,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 0.8478015783540023,
757
+ "grad_norm": 0.06324164569377899,
758
+ "learning_rate": 2.565039282716045e-06,
759
+ "loss": 0.6533,
760
+ "num_input_tokens_seen": 197132288,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 0.8568207440811725,
765
+ "grad_norm": 0.06285514682531357,
766
+ "learning_rate": 2.2592001161370392e-06,
767
+ "loss": 0.6606,
768
+ "num_input_tokens_seen": 199229440,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 0.8658399098083427,
773
+ "grad_norm": 0.06468215584754944,
774
+ "learning_rate": 1.97190867212875e-06,
775
+ "loss": 0.6667,
776
+ "num_input_tokens_seen": 201326592,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.874859075535513,
781
+ "grad_norm": 0.06431297212839127,
782
+ "learning_rate": 1.703399269713693e-06,
783
+ "loss": 0.6599,
784
+ "num_input_tokens_seen": 203423744,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 0.8838782412626832,
789
+ "grad_norm": 0.06363896280527115,
790
+ "learning_rate": 1.4538909090118846e-06,
791
+ "loss": 0.6499,
792
+ "num_input_tokens_seen": 205520896,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 0.8928974069898534,
797
+ "grad_norm": 0.06607792526483536,
798
+ "learning_rate": 1.2235870926211619e-06,
799
+ "loss": 0.649,
800
+ "num_input_tokens_seen": 207618048,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 0.9019165727170236,
805
+ "grad_norm": 0.06387382745742798,
806
+ "learning_rate": 1.0126756596375686e-06,
807
+ "loss": 0.6551,
808
+ "num_input_tokens_seen": 209715200,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.910935738444194,
813
+ "grad_norm": 0.07034407556056976,
814
+ "learning_rate": 8.213286324510738e-07,
815
+ "loss": 0.668,
816
+ "num_input_tokens_seen": 211812352,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 0.9199549041713642,
821
+ "grad_norm": 0.07087666541337967,
822
+ "learning_rate": 6.497020764416633e-07,
823
+ "loss": 0.6505,
824
+ "num_input_tokens_seen": 213909504,
825
+ "step": 102
826
+ },
827
+ {
828
+ "epoch": 0.9289740698985344,
829
+ "grad_norm": 0.07003826647996902,
830
+ "learning_rate": 4.979359726901639e-07,
831
+ "loss": 0.6504,
832
+ "num_input_tokens_seen": 216006656,
833
+ "step": 103
834
+ },
835
+ {
836
+ "epoch": 0.9379932356257046,
837
+ "grad_norm": 0.06608197838068008,
838
+ "learning_rate": 3.6615410380767544e-07,
839
+ "loss": 0.6504,
840
+ "num_input_tokens_seen": 218103808,
841
+ "step": 104
842
+ },
843
+ {
844
+ "epoch": 0.9470124013528749,
845
+ "grad_norm": 0.0653860792517662,
846
+ "learning_rate": 2.544639529766829e-07,
847
+ "loss": 0.6491,
848
+ "num_input_tokens_seen": 220200960,
849
+ "step": 105
850
+ },
851
+ {
852
+ "epoch": 0.9560315670800451,
853
+ "grad_norm": 0.06089319288730621,
854
+ "learning_rate": 1.6295661628624447e-07,
855
+ "loss": 0.6449,
856
+ "num_input_tokens_seen": 222298112,
857
+ "step": 106
858
+ },
859
+ {
860
+ "epoch": 0.9650507328072153,
861
+ "grad_norm": 0.06895752251148224,
862
+ "learning_rate": 9.170672843271666e-08,
863
+ "loss": 0.6729,
864
+ "num_input_tokens_seen": 224395264,
865
+ "step": 107
866
+ },
867
+ {
868
+ "epoch": 0.9740698985343855,
869
+ "grad_norm": 0.06209622696042061,
870
+ "learning_rate": 4.07724018466088e-08,
871
+ "loss": 0.6308,
872
+ "num_input_tokens_seen": 226492416,
873
+ "step": 108
874
+ },
875
+ {
876
+ "epoch": 0.9830890642615558,
877
+ "grad_norm": 0.06596114486455917,
878
+ "learning_rate": 1.0195179295269252e-08,
879
+ "loss": 0.6695,
880
+ "num_input_tokens_seen": 228589568,
881
+ "step": 109
882
+ },
883
+ {
884
+ "epoch": 0.992108229988726,
885
+ "grad_norm": 0.06238327547907829,
886
+ "learning_rate": 0.0,
887
+ "loss": 0.6467,
888
+ "num_input_tokens_seen": 230686720,
889
+ "step": 110
890
+ },
891
+ {
892
+ "epoch": 0.992108229988726,
893
+ "num_input_tokens_seen": 230686720,
894
+ "step": 110,
895
+ "total_flos": 9.786587384895242e+18,
896
+ "train_loss": 0.6728460962122137,
897
+ "train_runtime": 17352.9545,
898
+ "train_samples_per_second": 3.271,
899
+ "train_steps_per_second": 0.006
900
+ }
901
+ ],
902
+ "logging_steps": 1,
903
+ "max_steps": 110,
904
+ "num_input_tokens_seen": 230686720,
905
+ "num_train_epochs": 1,
906
+ "save_steps": 500,
907
+ "stateful_callbacks": {
908
+ "TrainerControl": {
909
+ "args": {
910
+ "should_epoch_stop": false,
911
+ "should_evaluate": false,
912
+ "should_log": false,
913
+ "should_save": true,
914
+ "should_training_stop": true
915
+ },
916
+ "attributes": {}
917
+ }
918
+ },
919
+ "total_flos": 9.786587384895242e+18,
920
+ "train_batch_size": 16,
921
+ "trial_name": null,
922
+ "trial_params": null
923
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a385fe18bbb396fad013d3c746e3b8b568ab94e7dcf02f90196ced85b17debfd
3
+ size 5624
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_330k_nsx
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: Qwen/Qwen2.5-Coder-7B-Instruct
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_nsx
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 500
34
+ stage: sft
35
+ template: qwen
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff