k1h0 commited on
Commit
c3f3d57
·
verified ·
1 Parent(s): 2c7cca4

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: Qwen/Qwen2.5-Coder-7B-Instruct
5
+ tags:
6
+ - llama-factory
7
+ - freeze
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: qwen_ns
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # qwen_ns
18
+
19
+ This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) on the codes_330k_ns dataset.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 16
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 4
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 512
46
+ - total_eval_batch_size: 32
47
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
48
+ - lr_scheduler_type: cosine
49
+ - num_epochs: 1.0
50
+
51
+ ### Training results
52
+
53
+
54
+
55
+ ### Framework versions
56
+
57
+ - Transformers 4.48.2
58
+ - Pytorch 2.5.1+cu124
59
+ - Datasets 3.2.0
60
+ - Tokenizers 0.21.0
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9963008631319359,
3
+ "num_input_tokens_seen": 211812352,
4
+ "total_flos": 8.985866598858359e+18,
5
+ "train_loss": 0.8237513356869763,
6
+ "train_runtime": 15586.605,
7
+ "train_samples_per_second": 3.328,
8
+ "train_steps_per_second": 0.006
9
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "factor": 1.0,
22
+ "high_freq_factor": 4.0,
23
+ "low_freq_factor": 1.0,
24
+ "original_max_position_embeddings": 32768,
25
+ "rope_type": "llama3"
26
+ },
27
+ "rope_theta": 1000000.0,
28
+ "sliding_window": null,
29
+ "tie_word_embeddings": false,
30
+ "torch_dtype": "bfloat16",
31
+ "transformers_version": "4.48.2",
32
+ "use_cache": false,
33
+ "use_sliding_window": false,
34
+ "vocab_size": 152064
35
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.48.2"
14
+ }
llamaboard_config.yaml ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ top.booster: liger_kernel
2
+ top.checkpoint_path: null
3
+ top.finetuning_type: freeze
4
+ top.model_name: Qwen2.5-Coder-7B-Instruct
5
+ top.quantization_bit: none
6
+ top.quantization_method: bitsandbytes
7
+ top.rope_scaling: llama3
8
+ top.template: qwen
9
+ train.additional_target: ''
10
+ train.apollo_rank: 256
11
+ train.apollo_scale: 1
12
+ train.apollo_target: all
13
+ train.apollo_update_interval: 200
14
+ train.badam_mode: layer
15
+ train.badam_switch_interval: 50
16
+ train.badam_switch_mode: ascending
17
+ train.badam_update_ratio: 0.05
18
+ train.batch_size: 16
19
+ train.compute_type: bf16
20
+ train.create_new_adapter: false
21
+ train.cutoff_len: 4096
22
+ train.dataset:
23
+ - codes_330k_ns
24
+ train.dataset_dir: data
25
+ train.ds_offload: false
26
+ train.ds_stage: none
27
+ train.extra_args: '{}'
28
+ train.freeze_extra_modules: ''
29
+ train.freeze_trainable_layers: 2
30
+ train.freeze_trainable_modules: all
31
+ train.galore_rank: 16
32
+ train.galore_scale: 2
33
+ train.galore_target: all
34
+ train.galore_update_interval: 200
35
+ train.gradient_accumulation_steps: 8
36
+ train.learning_rate: 5e-5
37
+ train.logging_steps: 1
38
+ train.lora_alpha: 16
39
+ train.lora_dropout: 0
40
+ train.lora_rank: 8
41
+ train.lora_target: ''
42
+ train.loraplus_lr_ratio: 0
43
+ train.lr_scheduler_type: cosine
44
+ train.mask_history: false
45
+ train.max_grad_norm: '1.0'
46
+ train.max_samples: '50000000'
47
+ train.neat_packing: true
48
+ train.neftune_alpha: 0
49
+ train.num_train_epochs: '1'
50
+ train.packing: true
51
+ train.ppo_score_norm: false
52
+ train.ppo_whiten_rewards: false
53
+ train.pref_beta: 0.1
54
+ train.pref_ftx: 0
55
+ train.pref_loss: sigmoid
56
+ train.report_to:
57
+ - none
58
+ train.resize_vocab: false
59
+ train.reward_model: null
60
+ train.save_steps: 500
61
+ train.swanlab_api_key: ''
62
+ train.swanlab_mode: cloud
63
+ train.swanlab_project: llamafactory
64
+ train.swanlab_run_name: ''
65
+ train.swanlab_workspace: ''
66
+ train.train_on_prompt: false
67
+ train.training_stage: Supervised Fine-Tuning
68
+ train.use_apollo: true
69
+ train.use_badam: false
70
+ train.use_dora: false
71
+ train.use_galore: false
72
+ train.use_llama_pro: true
73
+ train.use_pissa: false
74
+ train.use_rslora: false
75
+ train.use_swanlab: false
76
+ train.val_size: 0
77
+ train.warmup_steps: 0
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0b6f069918b07c064cbba8ae4f00f529aa9bbf84b7cdfcb7fc2694a40f6aa8ef
3
+ size 4877660776
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe239955bacb8d3fa0e387069734637cbbc4e536d61c1b5bae3b37b3e0754782
3
+ size 4932749648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7fe7bffab0f6953aeabfcc8a57ff1839b96e709e74ab7652b8d1a6dc0bde4cc
3
+ size 4991480296
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ac2c988228af0089658f352bf5d55fc0ed9c54acabe7b51220cf57528fde2eb
3
+ size 1361612328
model.safetensors.index.json ADDED
@@ -0,0 +1,346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16163464192
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors"
345
+ }
346
+ }
running_log.txt ADDED
@@ -0,0 +1,400 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [INFO|2025-04-28 12:29:05] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
2
+
3
+ [INFO|2025-04-28 12:29:05] configuration_utils.py:768 >> Model config Qwen2Config {
4
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
5
+ "architectures": [
6
+ "Qwen2ForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "bos_token_id": 151643,
10
+ "eos_token_id": 151645,
11
+ "hidden_act": "silu",
12
+ "hidden_size": 3584,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 18944,
15
+ "max_position_embeddings": 32768,
16
+ "max_window_layers": 28,
17
+ "model_type": "qwen2",
18
+ "num_attention_heads": 28,
19
+ "num_hidden_layers": 28,
20
+ "num_key_value_heads": 4,
21
+ "rms_norm_eps": 1e-06,
22
+ "rope_scaling": null,
23
+ "rope_theta": 1000000.0,
24
+ "sliding_window": null,
25
+ "tie_word_embeddings": false,
26
+ "torch_dtype": "bfloat16",
27
+ "transformers_version": "4.48.2",
28
+ "use_cache": true,
29
+ "use_sliding_window": false,
30
+ "vocab_size": 152064
31
+ }
32
+
33
+
34
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file vocab.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/vocab.json
35
+
36
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file merges.txt from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/merges.txt
37
+
38
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file tokenizer.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer.json
39
+
40
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file added_tokens.json from cache at None
41
+
42
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file special_tokens_map.json from cache at None
43
+
44
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file tokenizer_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/tokenizer_config.json
45
+
46
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2034 >> loading file chat_template.jinja from cache at None
47
+
48
+ [INFO|2025-04-28 12:29:05] tokenization_utils_base.py:2304 >> Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
49
+
50
+ [INFO|2025-04-28 12:29:05] logging.py:157 >> Add <|im_end|> to stop words.
51
+
52
+ [INFO|2025-04-28 12:29:05] logging.py:157 >> Loading dataset Codes_query_filtered_330k_ns.json...
53
+
54
+ [INFO|2025-04-28 12:29:09] configuration_utils.py:696 >> loading configuration file config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/config.json
55
+
56
+ [INFO|2025-04-28 12:29:09] configuration_utils.py:768 >> Model config Qwen2Config {
57
+ "_name_or_path": "Qwen/Qwen2.5-Coder-7B-Instruct",
58
+ "architectures": [
59
+ "Qwen2ForCausalLM"
60
+ ],
61
+ "attention_dropout": 0.0,
62
+ "bos_token_id": 151643,
63
+ "eos_token_id": 151645,
64
+ "hidden_act": "silu",
65
+ "hidden_size": 3584,
66
+ "initializer_range": 0.02,
67
+ "intermediate_size": 18944,
68
+ "max_position_embeddings": 32768,
69
+ "max_window_layers": 28,
70
+ "model_type": "qwen2",
71
+ "num_attention_heads": 28,
72
+ "num_hidden_layers": 28,
73
+ "num_key_value_heads": 4,
74
+ "rms_norm_eps": 1e-06,
75
+ "rope_scaling": null,
76
+ "rope_theta": 1000000.0,
77
+ "sliding_window": null,
78
+ "tie_word_embeddings": false,
79
+ "torch_dtype": "bfloat16",
80
+ "transformers_version": "4.48.2",
81
+ "use_cache": true,
82
+ "use_sliding_window": false,
83
+ "vocab_size": 152064
84
+ }
85
+
86
+
87
+ [WARNING|2025-04-28 12:29:09] logging.py:162 >> Input length is smaller than max length. Consider increase input length.
88
+
89
+ [INFO|2025-04-28 12:29:09] logging.py:157 >> Using llama3 scaling strategy and setting scaling factor to 1.0.
90
+
91
+ [INFO|2025-04-28 12:29:09] logging.py:157 >> Using block diagonal attention for sequence packing without cross-attention.
92
+
93
+ [INFO|2025-04-28 12:29:09] logging.py:157 >> Liger kernel has been applied to the model.
94
+
95
+ [INFO|2025-04-28 12:29:09] modeling_utils.py:3904 >> loading weights file model.safetensors from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/model.safetensors.index.json
96
+
97
+ [INFO|2025-04-28 12:29:09] modeling_utils.py:1582 >> Instantiating Qwen2ForCausalLM model under default dtype torch.bfloat16.
98
+
99
+ [INFO|2025-04-28 12:29:09] configuration_utils.py:1140 >> Generate config GenerationConfig {
100
+ "bos_token_id": 151643,
101
+ "eos_token_id": 151645
102
+ }
103
+
104
+
105
+ [INFO|2025-04-28 12:29:14] modeling_utils.py:4888 >> All model checkpoint weights were used when initializing Qwen2ForCausalLM.
106
+
107
+
108
+ [INFO|2025-04-28 12:29:14] modeling_utils.py:4896 >> All the weights of Qwen2ForCausalLM were initialized from the model checkpoint at Qwen/Qwen2.5-Coder-7B-Instruct.
109
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use Qwen2ForCausalLM for predictions without further training.
110
+
111
+ [INFO|2025-04-28 12:29:14] configuration_utils.py:1095 >> loading configuration file generation_config.json from cache at /home/kiho/.cache/huggingface/hub/models--Qwen--Qwen2.5-Coder-7B-Instruct/snapshots/c03e6d358207e414f1eca0bb1891e29f1db0e242/generation_config.json
112
+
113
+ [INFO|2025-04-28 12:29:14] configuration_utils.py:1140 >> Generate config GenerationConfig {
114
+ "bos_token_id": 151643,
115
+ "do_sample": true,
116
+ "eos_token_id": [
117
+ 151645,
118
+ 151643
119
+ ],
120
+ "pad_token_id": 151643,
121
+ "repetition_penalty": 1.1,
122
+ "temperature": 0.7,
123
+ "top_k": 20,
124
+ "top_p": 0.8
125
+ }
126
+
127
+
128
+ [INFO|2025-04-28 12:29:14] logging.py:157 >> Gradient checkpointing enabled.
129
+
130
+ [INFO|2025-04-28 12:29:14] logging.py:157 >> Using torch SDPA for faster training and inference.
131
+
132
+ [INFO|2025-04-28 12:29:14] logging.py:157 >> Upcasting trainable params to float32.
133
+
134
+ [INFO|2025-04-28 12:29:14] logging.py:157 >> Fine-tuning method: Freeze
135
+
136
+ [INFO|2025-04-28 12:29:14] logging.py:157 >> Set trainable layers: .13.,.27.
137
+
138
+ [INFO|2025-04-28 12:29:14] logging.py:157 >> trainable params: 466,115,584 || all params: 7,615,616,512 || trainable%: 6.1205
139
+
140
+ [INFO|2025-04-28 12:29:14] trainer.py:741 >> Using auto half precision backend
141
+
142
+ [INFO|2025-04-28 12:29:15] logging.py:157 >> Found linear modules: up_proj,gate_proj,q_proj,k_proj,down_proj,v_proj,o_proj
143
+
144
+ [INFO|2025-04-28 12:29:15] logging.py:157 >> Using APOLLO optimizer with args: {'rank': 256, 'proj': 'random', 'proj_type': 'std', 'update_proj_gap': 200, 'scale': 1, 'scale_type': 'channel', 'scale_front': False}.
145
+
146
+ [INFO|2025-04-28 12:29:16] trainer.py:2369 >> ***** Running training *****
147
+
148
+ [INFO|2025-04-28 12:29:16] trainer.py:2370 >> Num examples = 51,880
149
+
150
+ [INFO|2025-04-28 12:29:16] trainer.py:2371 >> Num Epochs = 1
151
+
152
+ [INFO|2025-04-28 12:29:16] trainer.py:2372 >> Instantaneous batch size per device = 16
153
+
154
+ [INFO|2025-04-28 12:29:16] trainer.py:2375 >> Total train batch size (w. parallel, distributed & accumulation) = 512
155
+
156
+ [INFO|2025-04-28 12:29:16] trainer.py:2376 >> Gradient Accumulation steps = 8
157
+
158
+ [INFO|2025-04-28 12:29:16] trainer.py:2377 >> Total optimization steps = 101
159
+
160
+ [INFO|2025-04-28 12:29:16] trainer.py:2378 >> Number of trainable parameters = 466,115,584
161
+
162
+ [INFO|2025-04-28 12:32:00] logging.py:157 >> {'loss': 1.0213, 'learning_rate': 4.9988e-05, 'epoch': 0.01, 'throughput': 12907.24}
163
+
164
+ [INFO|2025-04-28 12:34:34] logging.py:157 >> {'loss': 1.0136, 'learning_rate': 4.9952e-05, 'epoch': 0.02, 'throughput': 13247.81}
165
+
166
+ [INFO|2025-04-28 12:37:08] logging.py:157 >> {'loss': 0.9404, 'learning_rate': 4.9891e-05, 'epoch': 0.03, 'throughput': 13369.60}
167
+
168
+ [INFO|2025-04-28 12:39:42] logging.py:157 >> {'loss': 0.9530, 'learning_rate': 4.9807e-05, 'epoch': 0.04, 'throughput': 13426.82}
169
+
170
+ [INFO|2025-04-28 12:42:16] logging.py:157 >> {'loss': 0.9453, 'learning_rate': 4.9698e-05, 'epoch': 0.05, 'throughput': 13463.63}
171
+
172
+ [INFO|2025-04-28 12:44:50] logging.py:157 >> {'loss': 0.9111, 'learning_rate': 4.9566e-05, 'epoch': 0.06, 'throughput': 13485.87}
173
+
174
+ [INFO|2025-04-28 12:47:24] logging.py:157 >> {'loss': 0.8780, 'learning_rate': 4.9410e-05, 'epoch': 0.07, 'throughput': 13503.29}
175
+
176
+ [INFO|2025-04-28 12:49:59] logging.py:157 >> {'loss': 0.9140, 'learning_rate': 4.9230e-05, 'epoch': 0.08, 'throughput': 13515.40}
177
+
178
+ [INFO|2025-04-28 12:52:33] logging.py:157 >> {'loss': 0.8649, 'learning_rate': 4.9027e-05, 'epoch': 0.09, 'throughput': 13523.38}
179
+
180
+ [INFO|2025-04-28 12:55:07] logging.py:157 >> {'loss': 0.9029, 'learning_rate': 4.8800e-05, 'epoch': 0.10, 'throughput': 13530.26}
181
+
182
+ [INFO|2025-04-28 12:57:42] logging.py:157 >> {'loss': 0.8820, 'learning_rate': 4.8551e-05, 'epoch': 0.11, 'throughput': 13535.32}
183
+
184
+ [INFO|2025-04-28 13:00:16] logging.py:157 >> {'loss': 0.8438, 'learning_rate': 4.8279e-05, 'epoch': 0.12, 'throughput': 13536.90}
185
+
186
+ [INFO|2025-04-28 13:02:51] logging.py:157 >> {'loss': 0.8743, 'learning_rate': 4.7984e-05, 'epoch': 0.13, 'throughput': 13535.86}
187
+
188
+ [INFO|2025-04-28 13:05:26] logging.py:157 >> {'loss': 0.8736, 'learning_rate': 4.7667e-05, 'epoch': 0.14, 'throughput': 13539.44}
189
+
190
+ [INFO|2025-04-28 13:08:00] logging.py:157 >> {'loss': 0.8687, 'learning_rate': 4.7328e-05, 'epoch': 0.15, 'throughput': 13542.72}
191
+
192
+ [INFO|2025-04-28 13:10:34] logging.py:157 >> {'loss': 0.8640, 'learning_rate': 4.6967e-05, 'epoch': 0.16, 'throughput': 13545.64}
193
+
194
+ [INFO|2025-04-28 13:13:09] logging.py:157 >> {'loss': 0.8877, 'learning_rate': 4.6586e-05, 'epoch': 0.17, 'throughput': 13548.59}
195
+
196
+ [INFO|2025-04-28 13:15:43] logging.py:157 >> {'loss': 0.8749, 'learning_rate': 4.6183e-05, 'epoch': 0.18, 'throughput': 13551.29}
197
+
198
+ [INFO|2025-04-28 13:18:17] logging.py:157 >> {'loss': 0.8338, 'learning_rate': 4.5760e-05, 'epoch': 0.19, 'throughput': 13551.85}
199
+
200
+ [INFO|2025-04-28 13:20:52] logging.py:157 >> {'loss': 0.8294, 'learning_rate': 4.5316e-05, 'epoch': 0.20, 'throughput': 13552.35}
201
+
202
+ [INFO|2025-04-28 13:23:27] logging.py:157 >> {'loss': 0.8666, 'learning_rate': 4.4854e-05, 'epoch': 0.21, 'throughput': 13553.49}
203
+
204
+ [INFO|2025-04-28 13:26:01] logging.py:157 >> {'loss': 0.8038, 'learning_rate': 4.4371e-05, 'epoch': 0.22, 'throughput': 13554.09}
205
+
206
+ [INFO|2025-04-28 13:28:36] logging.py:157 >> {'loss': 0.8492, 'learning_rate': 4.3871e-05, 'epoch': 0.23, 'throughput': 13554.87}
207
+
208
+ [INFO|2025-04-28 13:31:10] logging.py:157 >> {'loss': 0.8047, 'learning_rate': 4.3351e-05, 'epoch': 0.24, 'throughput': 13555.65}
209
+
210
+ [INFO|2025-04-28 13:33:45] logging.py:157 >> {'loss': 0.8521, 'learning_rate': 4.2815e-05, 'epoch': 0.25, 'throughput': 13556.20}
211
+
212
+ [INFO|2025-04-28 13:36:19] logging.py:157 >> {'loss': 0.8133, 'learning_rate': 4.2261e-05, 'epoch': 0.26, 'throughput': 13556.46}
213
+
214
+ [INFO|2025-04-28 13:38:53] logging.py:157 >> {'loss': 0.8365, 'learning_rate': 4.1690e-05, 'epoch': 0.27, 'throughput': 13559.29}
215
+
216
+ [INFO|2025-04-28 13:41:27] logging.py:157 >> {'loss': 0.8094, 'learning_rate': 4.1103e-05, 'epoch': 0.28, 'throughput': 13563.03}
217
+
218
+ [INFO|2025-04-28 13:44:00] logging.py:157 >> {'loss': 0.8174, 'learning_rate': 4.0500e-05, 'epoch': 0.29, 'throughput': 13565.42}
219
+
220
+ [INFO|2025-04-28 13:46:35] logging.py:157 >> {'loss': 0.8278, 'learning_rate': 3.9883e-05, 'epoch': 0.30, 'throughput': 13566.62}
221
+
222
+ [INFO|2025-04-28 13:49:08] logging.py:157 >> {'loss': 0.8425, 'learning_rate': 3.9251e-05, 'epoch': 0.31, 'throughput': 13569.29}
223
+
224
+ [INFO|2025-04-28 13:51:42] logging.py:157 >> {'loss': 0.8145, 'learning_rate': 3.8605e-05, 'epoch': 0.32, 'throughput': 13570.89}
225
+
226
+ [INFO|2025-04-28 13:54:16] logging.py:157 >> {'loss': 0.8322, 'learning_rate': 3.7946e-05, 'epoch': 0.33, 'throughput': 13573.07}
227
+
228
+ [INFO|2025-04-28 13:56:51] logging.py:157 >> {'loss': 0.8114, 'learning_rate': 3.7275e-05, 'epoch': 0.34, 'throughput': 13572.53}
229
+
230
+ [INFO|2025-04-28 13:59:25] logging.py:157 >> {'loss': 0.8091, 'learning_rate': 3.6592e-05, 'epoch': 0.35, 'throughput': 13572.13}
231
+
232
+ [INFO|2025-04-28 14:01:59] logging.py:157 >> {'loss': 0.7743, 'learning_rate': 3.5897e-05, 'epoch': 0.36, 'throughput': 13573.61}
233
+
234
+ [INFO|2025-04-28 14:04:33] logging.py:157 >> {'loss': 0.8368, 'learning_rate': 3.5192e-05, 'epoch': 0.36, 'throughput': 13575.22}
235
+
236
+ [INFO|2025-04-28 14:07:07] logging.py:157 >> {'loss': 0.8177, 'learning_rate': 3.4477e-05, 'epoch': 0.37, 'throughput': 13576.95}
237
+
238
+ [INFO|2025-04-28 14:09:41] logging.py:157 >> {'loss': 0.8109, 'learning_rate': 3.3753e-05, 'epoch': 0.38, 'throughput': 13577.04}
239
+
240
+ [INFO|2025-04-28 14:12:15] logging.py:157 >> {'loss': 0.8270, 'learning_rate': 3.3021e-05, 'epoch': 0.39, 'throughput': 13578.09}
241
+
242
+ [INFO|2025-04-28 14:14:49] logging.py:157 >> {'loss': 0.8167, 'learning_rate': 3.2280e-05, 'epoch': 0.40, 'throughput': 13579.75}
243
+
244
+ [INFO|2025-04-28 14:17:22] logging.py:157 >> {'loss': 0.8073, 'learning_rate': 3.1533e-05, 'epoch': 0.41, 'throughput': 13581.88}
245
+
246
+ [INFO|2025-04-28 14:19:56] logging.py:157 >> {'loss': 0.7793, 'learning_rate': 3.0779e-05, 'epoch': 0.42, 'throughput': 13583.46}
247
+
248
+ [INFO|2025-04-28 14:22:30] logging.py:157 >> {'loss': 0.8096, 'learning_rate': 3.0020e-05, 'epoch': 0.43, 'throughput': 13585.16}
249
+
250
+ [INFO|2025-04-28 14:25:03] logging.py:157 >> {'loss': 0.8212, 'learning_rate': 2.9256e-05, 'epoch': 0.44, 'throughput': 13586.73}
251
+
252
+ [INFO|2025-04-28 14:27:38] logging.py:157 >> {'loss': 0.8151, 'learning_rate': 2.8488e-05, 'epoch': 0.45, 'throughput': 13586.13}
253
+
254
+ [INFO|2025-04-28 14:30:11] logging.py:157 >> {'loss': 0.8331, 'learning_rate': 2.7716e-05, 'epoch': 0.46, 'throughput': 13587.29}
255
+
256
+ [INFO|2025-04-28 14:32:46] logging.py:157 >> {'loss': 0.8003, 'learning_rate': 2.6942e-05, 'epoch': 0.47, 'throughput': 13587.74}
257
+
258
+ [INFO|2025-04-28 14:35:19] logging.py:157 >> {'loss': 0.8214, 'learning_rate': 2.6166e-05, 'epoch': 0.48, 'throughput': 13588.82}
259
+
260
+ [INFO|2025-04-28 14:37:53] logging.py:157 >> {'loss': 0.8118, 'learning_rate': 2.5389e-05, 'epoch': 0.49, 'throughput': 13589.60}
261
+
262
+ [INFO|2025-04-28 14:40:27] logging.py:157 >> {'loss': 0.8382, 'learning_rate': 2.4611e-05, 'epoch': 0.50, 'throughput': 13590.81}
263
+
264
+ [INFO|2025-04-28 14:43:01] logging.py:157 >> {'loss': 0.8099, 'learning_rate': 2.3834e-05, 'epoch': 0.51, 'throughput': 13590.72}
265
+
266
+ [INFO|2025-04-28 14:45:35] logging.py:157 >> {'loss': 0.7914, 'learning_rate': 2.3058e-05, 'epoch': 0.52, 'throughput': 13591.47}
267
+
268
+ [INFO|2025-04-28 14:48:09] logging.py:157 >> {'loss': 0.8104, 'learning_rate': 2.2284e-05, 'epoch': 0.53, 'throughput': 13592.65}
269
+
270
+ [INFO|2025-04-28 14:50:42] logging.py:157 >> {'loss': 0.8125, 'learning_rate': 2.1512e-05, 'epoch': 0.54, 'throughput': 13593.72}
271
+
272
+ [INFO|2025-04-28 14:53:16] logging.py:157 >> {'loss': 0.8198, 'learning_rate': 2.0744e-05, 'epoch': 0.55, 'throughput': 13594.46}
273
+
274
+ [INFO|2025-04-28 14:55:50] logging.py:157 >> {'loss': 0.8019, 'learning_rate': 1.9980e-05, 'epoch': 0.56, 'throughput': 13594.62}
275
+
276
+ [INFO|2025-04-28 14:58:24] logging.py:157 >> {'loss': 0.8141, 'learning_rate': 1.9221e-05, 'epoch': 0.57, 'throughput': 13595.48}
277
+
278
+ [INFO|2025-04-28 15:00:58] logging.py:157 >> {'loss': 0.7985, 'learning_rate': 1.8467e-05, 'epoch': 0.58, 'throughput': 13596.37}
279
+
280
+ [INFO|2025-04-28 15:03:31] logging.py:157 >> {'loss': 0.7998, 'learning_rate': 1.7720e-05, 'epoch': 0.59, 'throughput': 13597.32}
281
+
282
+ [INFO|2025-04-28 15:06:05] logging.py:157 >> {'loss': 0.7988, 'learning_rate': 1.6979e-05, 'epoch': 0.60, 'throughput': 13597.98}
283
+
284
+ [INFO|2025-04-28 15:08:39] logging.py:157 >> {'loss': 0.8016, 'learning_rate': 1.6247e-05, 'epoch': 0.61, 'throughput': 13598.66}
285
+
286
+ [INFO|2025-04-28 15:11:12] logging.py:157 >> {'loss': 0.8162, 'learning_rate': 1.5523e-05, 'epoch': 0.62, 'throughput': 13599.73}
287
+
288
+ [INFO|2025-04-28 15:13:46] logging.py:157 >> {'loss': 0.8258, 'learning_rate': 1.4808e-05, 'epoch': 0.63, 'throughput': 13600.66}
289
+
290
+ [INFO|2025-04-28 15:16:19] logging.py:157 >> {'loss': 0.8063, 'learning_rate': 1.4103e-05, 'epoch': 0.64, 'throughput': 13601.35}
291
+
292
+ [INFO|2025-04-28 15:18:53] logging.py:157 >> {'loss': 0.8116, 'learning_rate': 1.3408e-05, 'epoch': 0.65, 'throughput': 13601.79}
293
+
294
+ [INFO|2025-04-28 15:21:27] logging.py:157 >> {'loss': 0.7850, 'learning_rate': 1.2725e-05, 'epoch': 0.66, 'throughput': 13602.47}
295
+
296
+ [INFO|2025-04-28 15:24:01] logging.py:157 >> {'loss': 0.8049, 'learning_rate': 1.2054e-05, 'epoch': 0.67, 'throughput': 13602.60}
297
+
298
+ [INFO|2025-04-28 15:26:35] logging.py:157 >> {'loss': 0.8034, 'learning_rate': 1.1395e-05, 'epoch': 0.68, 'throughput': 13603.14}
299
+
300
+ [INFO|2025-04-28 15:29:08] logging.py:157 >> {'loss': 0.7949, 'learning_rate': 1.0749e-05, 'epoch': 0.69, 'throughput': 13603.86}
301
+
302
+ [INFO|2025-04-28 15:31:42] logging.py:157 >> {'loss': 0.8024, 'learning_rate': 1.0117e-05, 'epoch': 0.70, 'throughput': 13603.82}
303
+
304
+ [INFO|2025-04-28 15:34:17] logging.py:157 >> {'loss': 0.7608, 'learning_rate': 9.4998e-06, 'epoch': 0.71, 'throughput': 13603.58}
305
+
306
+ [INFO|2025-04-28 15:36:51] logging.py:157 >> {'loss': 0.8012, 'learning_rate': 8.8972e-06, 'epoch': 0.72, 'throughput': 13603.80}
307
+
308
+ [INFO|2025-04-28 15:39:25] logging.py:157 >> {'loss': 0.7688, 'learning_rate': 8.3103e-06, 'epoch': 0.73, 'throughput': 13604.36}
309
+
310
+ [INFO|2025-04-28 15:41:58] logging.py:157 >> {'loss': 0.8023, 'learning_rate': 7.7395e-06, 'epoch': 0.74, 'throughput': 13604.88}
311
+
312
+ [INFO|2025-04-28 15:44:32] logging.py:157 >> {'loss': 0.7809, 'learning_rate': 7.1854e-06, 'epoch': 0.75, 'throughput': 13605.47}
313
+
314
+ [INFO|2025-04-28 15:47:05] logging.py:157 >> {'loss': 0.8083, 'learning_rate': 6.6485e-06, 'epoch': 0.76, 'throughput': 13606.21}
315
+
316
+ [INFO|2025-04-28 15:49:39] logging.py:157 >> {'loss': 0.7903, 'learning_rate': 6.1294e-06, 'epoch': 0.77, 'throughput': 13606.72}
317
+
318
+ [INFO|2025-04-28 15:52:13] logging.py:157 >> {'loss': 0.7904, 'learning_rate': 5.6286e-06, 'epoch': 0.78, 'throughput': 13607.18}
319
+
320
+ [INFO|2025-04-28 15:54:46] logging.py:157 >> {'loss': 0.7970, 'learning_rate': 5.1465e-06, 'epoch': 0.79, 'throughput': 13607.74}
321
+
322
+ [INFO|2025-04-28 15:57:20] logging.py:157 >> {'loss': 0.7636, 'learning_rate': 4.6836e-06, 'epoch': 0.80, 'throughput': 13608.08}
323
+
324
+ [INFO|2025-04-28 15:59:55] logging.py:157 >> {'loss': 0.7818, 'learning_rate': 4.2403e-06, 'epoch': 0.81, 'throughput': 13607.00}
325
+
326
+ [INFO|2025-04-28 16:02:29] logging.py:157 >> {'loss': 0.7914, 'learning_rate': 3.8171e-06, 'epoch': 0.82, 'throughput': 13607.35}
327
+
328
+ [INFO|2025-04-28 16:05:03] logging.py:157 >> {'loss': 0.7985, 'learning_rate': 3.4145e-06, 'epoch': 0.83, 'throughput': 13607.72}
329
+
330
+ [INFO|2025-04-28 16:07:36] logging.py:157 >> {'loss': 0.7868, 'learning_rate': 3.0327e-06, 'epoch': 0.84, 'throughput': 13608.19}
331
+
332
+ [INFO|2025-04-28 16:10:10] logging.py:157 >> {'loss': 0.7972, 'learning_rate': 2.6721e-06, 'epoch': 0.85, 'throughput': 13608.54}
333
+
334
+ [INFO|2025-04-28 16:12:44] logging.py:157 >> {'loss': 0.7933, 'learning_rate': 2.3332e-06, 'epoch': 0.86, 'throughput': 13609.13}
335
+
336
+ [INFO|2025-04-28 16:15:17] logging.py:157 >> {'loss': 0.7695, 'learning_rate': 2.0162e-06, 'epoch': 0.87, 'throughput': 13609.89}
337
+
338
+ [INFO|2025-04-28 16:17:51] logging.py:157 >> {'loss': 0.7929, 'learning_rate': 1.7214e-06, 'epoch': 0.88, 'throughput': 13609.74}
339
+
340
+ [INFO|2025-04-28 16:20:25] logging.py:157 >> {'loss': 0.7995, 'learning_rate': 1.4491e-06, 'epoch': 0.89, 'throughput': 13610.21}
341
+
342
+ [INFO|2025-04-28 16:22:59] logging.py:157 >> {'loss': 0.7857, 'learning_rate': 1.1997e-06, 'epoch': 0.90, 'throughput': 13610.41}
343
+
344
+ [INFO|2025-04-28 16:25:33] logging.py:157 >> {'loss': 0.8215, 'learning_rate': 9.7323e-07, 'epoch': 0.91, 'throughput': 13610.73}
345
+
346
+ [INFO|2025-04-28 16:28:06] logging.py:157 >> {'loss': 0.7931, 'learning_rate': 7.7003e-07, 'epoch': 0.92, 'throughput': 13611.14}
347
+
348
+ [INFO|2025-04-28 16:30:40] logging.py:157 >> {'loss': 0.7927, 'learning_rate': 5.9026e-07, 'epoch': 0.93, 'throughput': 13611.37}
349
+
350
+ [INFO|2025-04-28 16:33:14] logging.py:157 >> {'loss': 0.7787, 'learning_rate': 4.3412e-07, 'epoch': 0.94, 'throughput': 13611.55}
351
+
352
+ [INFO|2025-04-28 16:35:49] logging.py:157 >> {'loss': 0.7771, 'learning_rate': 3.0174e-07, 'epoch': 0.95, 'throughput': 13610.50}
353
+
354
+ [INFO|2025-04-28 16:38:24] logging.py:157 >> {'loss': 0.7931, 'learning_rate': 1.9325e-07, 'epoch': 0.96, 'throughput': 13610.20}
355
+
356
+ [INFO|2025-04-28 16:40:58] logging.py:157 >> {'loss': 0.7902, 'learning_rate': 1.0877e-07, 'epoch': 0.97, 'throughput': 13609.88}
357
+
358
+ [INFO|2025-04-28 16:43:32] logging.py:157 >> {'loss': 0.7906, 'learning_rate': 4.8360e-08, 'epoch': 0.98, 'throughput': 13610.30}
359
+
360
+ [INFO|2025-04-28 16:46:05] logging.py:157 >> {'loss': 0.8083, 'learning_rate': 1.2093e-08, 'epoch': 0.99, 'throughput': 13610.82}
361
+
362
+ [INFO|2025-04-28 16:48:39] logging.py:157 >> {'loss': 0.7963, 'learning_rate': 0.0000e+00, 'epoch': 1.00, 'throughput': 13611.38}
363
+
364
+ [INFO|2025-04-28 16:48:39] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/checkpoint-101
365
+
366
+ [INFO|2025-04-28 16:48:39] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/checkpoint-101/config.json
367
+
368
+ [INFO|2025-04-28 16:48:39] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/checkpoint-101/generation_config.json
369
+
370
+ [INFO|2025-04-28 16:49:02] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/checkpoint-101/model.safetensors.index.json.
371
+
372
+ [INFO|2025-04-28 16:49:02] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/checkpoint-101/tokenizer_config.json
373
+
374
+ [INFO|2025-04-28 16:49:02] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/checkpoint-101/special_tokens_map.json
375
+
376
+ [INFO|2025-04-28 16:49:03] trainer.py:2643 >>
377
+
378
+ Training completed. Do not forget to share your model on huggingface.co/models =)
379
+
380
+
381
+
382
+ [INFO|2025-04-28 16:49:03] trainer.py:3910 >> Saving model checkpoint to saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns
383
+
384
+ [INFO|2025-04-28 16:49:03] configuration_utils.py:420 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/config.json
385
+
386
+ [INFO|2025-04-28 16:49:03] configuration_utils.py:909 >> Configuration saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/generation_config.json
387
+
388
+ [INFO|2025-04-28 16:49:26] modeling_utils.py:2996 >> The model is bigger than the maximum size per checkpoint (5GB) and is going to be split in 4 checkpoint shards. You can find where each parameters has been saved in the index located at saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/model.safetensors.index.json.
389
+
390
+ [INFO|2025-04-28 16:49:26] tokenization_utils_base.py:2491 >> tokenizer config file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/tokenizer_config.json
391
+
392
+ [INFO|2025-04-28 16:49:26] tokenization_utils_base.py:2500 >> Special tokens file saved in saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns/special_tokens_map.json
393
+
394
+ [WARNING|2025-04-28 16:49:26] logging.py:162 >> No metric eval_loss to plot.
395
+
396
+ [WARNING|2025-04-28 16:49:26] logging.py:162 >> No metric eval_accuracy to plot.
397
+
398
+ [INFO|2025-04-28 16:49:26] modelcard.py:449 >> Dropping the following result as it does not have all the necessary fields:
399
+ {'task': {'name': 'Causal Language Modeling', 'type': 'text-generation'}}
400
+
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 4096,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9963008631319359,
3
+ "num_input_tokens_seen": 211812352,
4
+ "total_flos": 8.985866598858359e+18,
5
+ "train_loss": 0.8237513356869763,
6
+ "train_runtime": 15586.605,
7
+ "train_samples_per_second": 3.328,
8
+ "train_steps_per_second": 0.006
9
+ }
trainer_log.jsonl ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {"current_steps": 1, "total_steps": 101, "loss": 1.0213, "lr": 4.998790705729971e-05, "epoch": 0.009864364981504316, "percentage": 0.99, "elapsed_time": "0:02:42", "remaining_time": "4:30:47", "throughput": 12907.24, "total_tokens": 2097152}
2
+ {"current_steps": 2, "total_steps": 101, "loss": 1.0136, "lr": 4.995163992833986e-05, "epoch": 0.01972872996300863, "percentage": 1.98, "elapsed_time": "0:05:16", "remaining_time": "4:21:11", "throughput": 13247.81, "total_tokens": 4194304}
3
+ {"current_steps": 3, "total_steps": 101, "loss": 0.9404, "lr": 4.989123369922547e-05, "epoch": 0.029593094944512947, "percentage": 2.97, "elapsed_time": "0:07:50", "remaining_time": "4:16:12", "throughput": 13369.6, "total_tokens": 6291456}
4
+ {"current_steps": 4, "total_steps": 101, "loss": 0.953, "lr": 4.980674680908192e-05, "epoch": 0.03945745992601726, "percentage": 3.96, "elapsed_time": "0:10:24", "remaining_time": "4:12:30", "throughput": 13426.82, "total_tokens": 8388608}
5
+ {"current_steps": 5, "total_steps": 101, "loss": 0.9453, "lr": 4.969826099351892e-05, "epoch": 0.04932182490752158, "percentage": 4.95, "elapsed_time": "0:12:58", "remaining_time": "4:09:13", "throughput": 13463.63, "total_tokens": 10485760}
6
+ {"current_steps": 6, "total_steps": 101, "loss": 0.9111, "lr": 4.9565881205556594e-05, "epoch": 0.059186189889025895, "percentage": 5.94, "elapsed_time": "0:15:33", "remaining_time": "4:06:13", "throughput": 13485.87, "total_tokens": 12582912}
7
+ {"current_steps": 7, "total_steps": 101, "loss": 0.878, "lr": 4.940973551409018e-05, "epoch": 0.0690505548705302, "percentage": 6.93, "elapsed_time": "0:18:07", "remaining_time": "4:03:18", "throughput": 13503.29, "total_tokens": 14680064}
8
+ {"current_steps": 8, "total_steps": 101, "loss": 0.914, "lr": 4.922997497999166e-05, "epoch": 0.07891491985203453, "percentage": 7.92, "elapsed_time": "0:20:41", "remaining_time": "4:00:30", "throughput": 13515.4, "total_tokens": 16777216}
9
+ {"current_steps": 9, "total_steps": 101, "loss": 0.8649, "lr": 4.9026773509968115e-05, "epoch": 0.08877928483353884, "percentage": 8.91, "elapsed_time": "0:23:15", "remaining_time": "3:57:46", "throughput": 13523.38, "total_tokens": 18874368}
10
+ {"current_steps": 10, "total_steps": 101, "loss": 0.9029, "lr": 4.8800327688318246e-05, "epoch": 0.09864364981504316, "percentage": 9.9, "elapsed_time": "0:25:49", "remaining_time": "3:55:04", "throughput": 13530.26, "total_tokens": 20971520}
11
+ {"current_steps": 11, "total_steps": 101, "loss": 0.882, "lr": 4.855085658674973e-05, "epoch": 0.10850801479654747, "percentage": 10.89, "elapsed_time": "0:28:24", "remaining_time": "3:52:24", "throughput": 13535.32, "total_tokens": 23068672}
12
+ {"current_steps": 12, "total_steps": 101, "loss": 0.8438, "lr": 4.827860155244149e-05, "epoch": 0.11837237977805179, "percentage": 11.88, "elapsed_time": "0:30:59", "remaining_time": "3:49:47", "throughput": 13536.9, "total_tokens": 25165824}
13
+ {"current_steps": 13, "total_steps": 101, "loss": 0.8743, "lr": 4.798382597455591e-05, "epoch": 0.1282367447595561, "percentage": 12.87, "elapsed_time": "0:33:34", "remaining_time": "3:47:14", "throughput": 13535.86, "total_tokens": 27262976}
14
+ {"current_steps": 14, "total_steps": 101, "loss": 0.8736, "lr": 4.7666815029426816e-05, "epoch": 0.1381011097410604, "percentage": 13.86, "elapsed_time": "0:36:08", "remaining_time": "3:44:35", "throughput": 13539.44, "total_tokens": 29360128}
15
+ {"current_steps": 15, "total_steps": 101, "loss": 0.8687, "lr": 4.732787540466979e-05, "epoch": 0.14796547472256474, "percentage": 14.85, "elapsed_time": "0:38:42", "remaining_time": "3:41:57", "throughput": 13542.72, "total_tokens": 31457280}
16
+ {"current_steps": 16, "total_steps": 101, "loss": 0.864, "lr": 4.696733500248172e-05, "epoch": 0.15782983970406905, "percentage": 15.84, "elapsed_time": "0:41:17", "remaining_time": "3:39:19", "throughput": 13545.64, "total_tokens": 33554432}
17
+ {"current_steps": 17, "total_steps": 101, "loss": 0.8877, "lr": 4.658554262241659e-05, "epoch": 0.16769420468557336, "percentage": 16.83, "elapsed_time": "0:43:51", "remaining_time": "3:36:42", "throughput": 13548.59, "total_tokens": 35651584}
18
+ {"current_steps": 18, "total_steps": 101, "loss": 0.8749, "lr": 4.6182867623944436e-05, "epoch": 0.17755856966707767, "percentage": 17.82, "elapsed_time": "0:46:25", "remaining_time": "3:34:04", "throughput": 13551.29, "total_tokens": 37748736}
19
+ {"current_steps": 19, "total_steps": 101, "loss": 0.8338, "lr": 4.575969956911994e-05, "epoch": 0.187422934648582, "percentage": 18.81, "elapsed_time": "0:49:00", "remaining_time": "3:31:29", "throughput": 13551.85, "total_tokens": 39845888}
20
+ {"current_steps": 20, "total_steps": 101, "loss": 0.8294, "lr": 4.531644784570626e-05, "epoch": 0.19728729963008632, "percentage": 19.8, "elapsed_time": "0:51:34", "remaining_time": "3:28:54", "throughput": 13552.35, "total_tokens": 41943040}
21
+ {"current_steps": 21, "total_steps": 101, "loss": 0.8666, "lr": 4.485354127111884e-05, "epoch": 0.20715166461159062, "percentage": 20.79, "elapsed_time": "0:54:09", "remaining_time": "3:26:18", "throughput": 13553.49, "total_tokens": 44040192}
22
+ {"current_steps": 22, "total_steps": 101, "loss": 0.8038, "lr": 4.437142767757225e-05, "epoch": 0.21701602959309493, "percentage": 21.78, "elapsed_time": "0:56:43", "remaining_time": "3:23:43", "throughput": 13554.09, "total_tokens": 46137344}
23
+ {"current_steps": 23, "total_steps": 101, "loss": 0.8492, "lr": 4.387057347883143e-05, "epoch": 0.22688039457459927, "percentage": 22.77, "elapsed_time": "0:59:18", "remaining_time": "3:21:07", "throughput": 13554.87, "total_tokens": 48234496}
24
+ {"current_steps": 24, "total_steps": 101, "loss": 0.8047, "lr": 4.335146321898651e-05, "epoch": 0.23674475955610358, "percentage": 23.76, "elapsed_time": "1:01:52", "remaining_time": "3:18:32", "throughput": 13555.65, "total_tokens": 50331648}
25
+ {"current_steps": 25, "total_steps": 101, "loss": 0.8521, "lr": 4.281459910368768e-05, "epoch": 0.2466091245376079, "percentage": 24.75, "elapsed_time": "1:04:27", "remaining_time": "3:15:57", "throughput": 13556.2, "total_tokens": 52428800}
26
+ {"current_steps": 26, "total_steps": 101, "loss": 0.8133, "lr": 4.226050051429367e-05, "epoch": 0.2564734895191122, "percentage": 25.74, "elapsed_time": "1:07:02", "remaining_time": "3:13:22", "throughput": 13556.46, "total_tokens": 54525952}
27
+ {"current_steps": 27, "total_steps": 101, "loss": 0.8365, "lr": 4.168970350540384e-05, "epoch": 0.26633785450061653, "percentage": 26.73, "elapsed_time": "1:09:35", "remaining_time": "3:10:45", "throughput": 13559.29, "total_tokens": 56623104}
28
+ {"current_steps": 28, "total_steps": 101, "loss": 0.8094, "lr": 4.110276028625995e-05, "epoch": 0.2762022194821208, "percentage": 27.72, "elapsed_time": "1:12:09", "remaining_time": "3:08:07", "throughput": 13563.03, "total_tokens": 58720256}
29
+ {"current_steps": 29, "total_steps": 101, "loss": 0.8174, "lr": 4.050023868651938e-05, "epoch": 0.28606658446362515, "percentage": 28.71, "elapsed_time": "1:14:43", "remaining_time": "3:05:30", "throughput": 13565.42, "total_tokens": 60817408}
30
+ {"current_steps": 30, "total_steps": 101, "loss": 0.8278, "lr": 3.988272160691665e-05, "epoch": 0.2959309494451295, "percentage": 29.7, "elapsed_time": "1:17:17", "remaining_time": "3:02:55", "throughput": 13566.62, "total_tokens": 62914560}
31
+ {"current_steps": 31, "total_steps": 101, "loss": 0.8425, "lr": 3.925080645534457e-05, "epoch": 0.30579531442663377, "percentage": 30.69, "elapsed_time": "1:19:51", "remaining_time": "3:00:18", "throughput": 13569.29, "total_tokens": 65011712}
32
+ {"current_steps": 32, "total_steps": 101, "loss": 0.8145, "lr": 3.8605104568900685e-05, "epoch": 0.3156596794081381, "percentage": 31.68, "elapsed_time": "1:22:25", "remaining_time": "2:57:42", "throughput": 13570.89, "total_tokens": 67108864}
33
+ {"current_steps": 33, "total_steps": 101, "loss": 0.8322, "lr": 3.7946240622458135e-05, "epoch": 0.32552404438964244, "percentage": 32.67, "elapsed_time": "1:24:58", "remaining_time": "2:55:06", "throughput": 13573.07, "total_tokens": 69206016}
34
+ {"current_steps": 34, "total_steps": 101, "loss": 0.8114, "lr": 3.7274852024333054e-05, "epoch": 0.3353884093711467, "percentage": 33.66, "elapsed_time": "1:27:33", "remaining_time": "2:52:32", "throughput": 13572.53, "total_tokens": 71303168}
35
+ {"current_steps": 35, "total_steps": 101, "loss": 0.8091, "lr": 3.6591588299633186e-05, "epoch": 0.34525277435265106, "percentage": 34.65, "elapsed_time": "1:30:08", "remaining_time": "2:49:58", "throughput": 13572.13, "total_tokens": 73400320}
36
+ {"current_steps": 36, "total_steps": 101, "loss": 0.7743, "lr": 3.589711046188428e-05, "epoch": 0.35511713933415534, "percentage": 35.64, "elapsed_time": "1:32:42", "remaining_time": "2:47:22", "throughput": 13573.61, "total_tokens": 75497472}
37
+ {"current_steps": 37, "total_steps": 101, "loss": 0.8368, "lr": 3.519209037354222e-05, "epoch": 0.3649815043156597, "percentage": 36.63, "elapsed_time": "1:35:15", "remaining_time": "2:44:46", "throughput": 13575.22, "total_tokens": 77594624}
38
+ {"current_steps": 38, "total_steps": 101, "loss": 0.8177, "lr": 3.447721009600949e-05, "epoch": 0.374845869297164, "percentage": 37.62, "elapsed_time": "1:37:49", "remaining_time": "2:42:11", "throughput": 13576.95, "total_tokens": 79691776}
39
+ {"current_steps": 39, "total_steps": 101, "loss": 0.8109, "lr": 3.3753161229784766e-05, "epoch": 0.3847102342786683, "percentage": 38.61, "elapsed_time": "1:40:24", "remaining_time": "2:39:36", "throughput": 13577.04, "total_tokens": 81788928}
40
+ {"current_steps": 40, "total_steps": 101, "loss": 0.827, "lr": 3.302064424538419e-05, "epoch": 0.39457459926017263, "percentage": 39.6, "elapsed_time": "1:42:58", "remaining_time": "2:37:01", "throughput": 13578.09, "total_tokens": 83886080}
41
+ {"current_steps": 41, "total_steps": 101, "loss": 0.8167, "lr": 3.228036780568131e-05, "epoch": 0.40443896424167697, "percentage": 40.59, "elapsed_time": "1:45:31", "remaining_time": "2:34:25", "throughput": 13579.75, "total_tokens": 85983232}
42
+ {"current_steps": 42, "total_steps": 101, "loss": 0.8073, "lr": 3.153304808032152e-05, "epoch": 0.41430332922318125, "percentage": 41.58, "elapsed_time": "1:48:05", "remaining_time": "2:31:50", "throughput": 13581.88, "total_tokens": 88080384}
43
+ {"current_steps": 43, "total_steps": 101, "loss": 0.7793, "lr": 3.077940805287425e-05, "epoch": 0.4241676942046856, "percentage": 42.57, "elapsed_time": "1:50:38", "remaining_time": "2:29:14", "throughput": 13583.46, "total_tokens": 90177536}
44
+ {"current_steps": 44, "total_steps": 101, "loss": 0.8096, "lr": 3.0020176821392964e-05, "epoch": 0.43403205918618987, "percentage": 43.56, "elapsed_time": "1:53:12", "remaining_time": "2:26:39", "throughput": 13585.16, "total_tokens": 92274688}
45
+ {"current_steps": 45, "total_steps": 101, "loss": 0.8212, "lr": 2.925608889305997e-05, "epoch": 0.4438964241676942, "percentage": 44.55, "elapsed_time": "1:55:45", "remaining_time": "2:24:03", "throughput": 13586.73, "total_tokens": 94371840}
46
+ {"current_steps": 46, "total_steps": 101, "loss": 0.8151, "lr": 2.848788347359808e-05, "epoch": 0.45376078914919854, "percentage": 45.54, "elapsed_time": "1:58:20", "remaining_time": "2:21:29", "throughput": 13586.13, "total_tokens": 96468992}
47
+ {"current_steps": 47, "total_steps": 101, "loss": 0.8331, "lr": 2.7716303752136864e-05, "epoch": 0.4636251541307028, "percentage": 46.53, "elapsed_time": "2:00:54", "remaining_time": "2:18:54", "throughput": 13587.29, "total_tokens": 98566144}
48
+ {"current_steps": 48, "total_steps": 101, "loss": 0.8003, "lr": 2.6942096182225162e-05, "epoch": 0.47348951911220716, "percentage": 47.52, "elapsed_time": "2:03:28", "remaining_time": "2:16:20", "throughput": 13587.74, "total_tokens": 100663296}
49
+ {"current_steps": 49, "total_steps": 101, "loss": 0.8214, "lr": 2.616600975968544e-05, "epoch": 0.4833538840937115, "percentage": 48.51, "elapsed_time": "2:06:02", "remaining_time": "2:13:45", "throughput": 13588.82, "total_tokens": 102760448}
50
+ {"current_steps": 50, "total_steps": 101, "loss": 0.8118, "lr": 2.5388795298008776e-05, "epoch": 0.4932182490752158, "percentage": 49.5, "elapsed_time": "2:08:36", "remaining_time": "2:11:10", "throughput": 13589.6, "total_tokens": 104857600}
51
+ {"current_steps": 51, "total_steps": 101, "loss": 0.8382, "lr": 2.4611204701991227e-05, "epoch": 0.5030826140567201, "percentage": 50.5, "elapsed_time": "2:11:09", "remaining_time": "2:08:35", "throughput": 13590.81, "total_tokens": 106954752}
52
+ {"current_steps": 52, "total_steps": 101, "loss": 0.8099, "lr": 2.3833990240314562e-05, "epoch": 0.5129469790382244, "percentage": 51.49, "elapsed_time": "2:13:43", "remaining_time": "2:06:01", "throughput": 13590.72, "total_tokens": 109051904}
53
+ {"current_steps": 53, "total_steps": 101, "loss": 0.7914, "lr": 2.3057903817774843e-05, "epoch": 0.5228113440197287, "percentage": 52.48, "elapsed_time": "2:16:17", "remaining_time": "2:03:26", "throughput": 13591.47, "total_tokens": 111149056}
54
+ {"current_steps": 54, "total_steps": 101, "loss": 0.8104, "lr": 2.2283696247863135e-05, "epoch": 0.5326757090012331, "percentage": 53.47, "elapsed_time": "2:18:51", "remaining_time": "2:00:51", "throughput": 13592.65, "total_tokens": 113246208}
55
+ {"current_steps": 55, "total_steps": 101, "loss": 0.8125, "lr": 2.1512116526401928e-05, "epoch": 0.5425400739827374, "percentage": 54.46, "elapsed_time": "2:21:25", "remaining_time": "1:58:16", "throughput": 13593.72, "total_tokens": 115343360}
56
+ {"current_steps": 56, "total_steps": 101, "loss": 0.8198, "lr": 2.0743911106940034e-05, "epoch": 0.5524044389642416, "percentage": 55.45, "elapsed_time": "2:23:58", "remaining_time": "1:55:41", "throughput": 13594.46, "total_tokens": 117440512}
57
+ {"current_steps": 57, "total_steps": 101, "loss": 0.8019, "lr": 1.9979823178607042e-05, "epoch": 0.562268803945746, "percentage": 56.44, "elapsed_time": "2:26:33", "remaining_time": "1:53:07", "throughput": 13594.62, "total_tokens": 119537664}
58
+ {"current_steps": 58, "total_steps": 101, "loss": 0.8141, "lr": 1.9220591947125766e-05, "epoch": 0.5721331689272503, "percentage": 57.43, "elapsed_time": "2:29:06", "remaining_time": "1:50:32", "throughput": 13595.48, "total_tokens": 121634816}
59
+ {"current_steps": 59, "total_steps": 101, "loss": 0.7985, "lr": 1.846695191967849e-05, "epoch": 0.5819975339087546, "percentage": 58.42, "elapsed_time": "2:31:40", "remaining_time": "1:47:58", "throughput": 13596.37, "total_tokens": 123731968}
60
+ {"current_steps": 60, "total_steps": 101, "loss": 0.7998, "lr": 1.7719632194318702e-05, "epoch": 0.591861898890259, "percentage": 59.41, "elapsed_time": "2:34:13", "remaining_time": "1:45:23", "throughput": 13597.32, "total_tokens": 125829120}
61
+ {"current_steps": 61, "total_steps": 101, "loss": 0.7988, "lr": 1.6979355754615814e-05, "epoch": 0.6017262638717632, "percentage": 60.4, "elapsed_time": "2:36:47", "remaining_time": "1:42:49", "throughput": 13597.98, "total_tokens": 127926272}
62
+ {"current_steps": 62, "total_steps": 101, "loss": 0.8016, "lr": 1.6246838770215233e-05, "epoch": 0.6115906288532675, "percentage": 61.39, "elapsed_time": "2:39:21", "remaining_time": "1:40:14", "throughput": 13598.66, "total_tokens": 130023424}
63
+ {"current_steps": 63, "total_steps": 101, "loss": 0.8162, "lr": 1.552278990399052e-05, "epoch": 0.6214549938347719, "percentage": 62.38, "elapsed_time": "2:41:54", "remaining_time": "1:37:39", "throughput": 13599.73, "total_tokens": 132120576}
64
+ {"current_steps": 64, "total_steps": 101, "loss": 0.8258, "lr": 1.4807909626457782e-05, "epoch": 0.6313193588162762, "percentage": 63.37, "elapsed_time": "2:44:28", "remaining_time": "1:35:05", "throughput": 13600.66, "total_tokens": 134217728}
65
+ {"current_steps": 65, "total_steps": 101, "loss": 0.8063, "lr": 1.4102889538115723e-05, "epoch": 0.6411837237977805, "percentage": 64.36, "elapsed_time": "2:47:02", "remaining_time": "1:32:30", "throughput": 13601.35, "total_tokens": 136314880}
66
+ {"current_steps": 66, "total_steps": 101, "loss": 0.8116, "lr": 1.3408411700366813e-05, "epoch": 0.6510480887792849, "percentage": 65.35, "elapsed_time": "2:49:36", "remaining_time": "1:29:56", "throughput": 13601.79, "total_tokens": 138412032}
67
+ {"current_steps": 67, "total_steps": 101, "loss": 0.785, "lr": 1.2725147975666948e-05, "epoch": 0.6609124537607891, "percentage": 66.34, "elapsed_time": "2:52:09", "remaining_time": "1:27:21", "throughput": 13602.47, "total_tokens": 140509184}
68
+ {"current_steps": 68, "total_steps": 101, "loss": 0.8049, "lr": 1.2053759377541866e-05, "epoch": 0.6707768187422934, "percentage": 67.33, "elapsed_time": "2:54:43", "remaining_time": "1:24:47", "throughput": 13602.6, "total_tokens": 142606336}
69
+ {"current_steps": 69, "total_steps": 101, "loss": 0.8034, "lr": 1.1394895431099314e-05, "epoch": 0.6806411837237978, "percentage": 68.32, "elapsed_time": "2:57:17", "remaining_time": "1:22:13", "throughput": 13603.14, "total_tokens": 144703488}
70
+ {"current_steps": 70, "total_steps": 101, "loss": 0.7949, "lr": 1.0749193544655434e-05, "epoch": 0.6905055487053021, "percentage": 69.31, "elapsed_time": "2:59:51", "remaining_time": "1:19:38", "throughput": 13603.86, "total_tokens": 146800640}
71
+ {"current_steps": 71, "total_steps": 101, "loss": 0.8024, "lr": 1.0117278393083358e-05, "epoch": 0.7003699136868065, "percentage": 70.3, "elapsed_time": "3:02:25", "remaining_time": "1:17:04", "throughput": 13603.82, "total_tokens": 148897792}
72
+ {"current_steps": 72, "total_steps": 101, "loss": 0.7608, "lr": 9.499761313480626e-06, "epoch": 0.7102342786683107, "percentage": 71.29, "elapsed_time": "3:04:59", "remaining_time": "1:14:30", "throughput": 13603.58, "total_tokens": 150994944}
73
+ {"current_steps": 73, "total_steps": 101, "loss": 0.8012, "lr": 8.897239713740058e-06, "epoch": 0.720098643649815, "percentage": 72.28, "elapsed_time": "3:07:33", "remaining_time": "1:11:56", "throughput": 13603.8, "total_tokens": 153092096}
74
+ {"current_steps": 74, "total_steps": 101, "loss": 0.7688, "lr": 8.31029649459616e-06, "epoch": 0.7299630086313194, "percentage": 73.27, "elapsed_time": "3:10:07", "remaining_time": "1:09:22", "throughput": 13604.36, "total_tokens": 155189248}
75
+ {"current_steps": 75, "total_steps": 101, "loss": 0.8023, "lr": 7.739499485706334e-06, "epoch": 0.7398273736128237, "percentage": 74.26, "elapsed_time": "3:12:41", "remaining_time": "1:06:47", "throughput": 13604.88, "total_tokens": 157286400}
76
+ {"current_steps": 76, "total_steps": 101, "loss": 0.7809, "lr": 7.185400896312328e-06, "epoch": 0.749691738594328, "percentage": 75.25, "elapsed_time": "3:15:14", "remaining_time": "1:04:13", "throughput": 13605.47, "total_tokens": 159383552}
77
+ {"current_steps": 77, "total_steps": 101, "loss": 0.8083, "lr": 6.648536781013495e-06, "epoch": 0.7595561035758323, "percentage": 76.24, "elapsed_time": "3:17:48", "remaining_time": "1:01:39", "throughput": 13606.21, "total_tokens": 161480704}
78
+ {"current_steps": 78, "total_steps": 101, "loss": 0.7903, "lr": 6.12942652116858e-06, "epoch": 0.7694204685573366, "percentage": 77.23, "elapsed_time": "3:20:21", "remaining_time": "0:59:04", "throughput": 13606.72, "total_tokens": 163577856}
79
+ {"current_steps": 79, "total_steps": 101, "loss": 0.7904, "lr": 5.628572322427755e-06, "epoch": 0.7792848335388409, "percentage": 78.22, "elapsed_time": "3:22:55", "remaining_time": "0:56:30", "throughput": 13607.18, "total_tokens": 165675008}
80
+ {"current_steps": 80, "total_steps": 101, "loss": 0.797, "lr": 5.1464587288811624e-06, "epoch": 0.7891491985203453, "percentage": 79.21, "elapsed_time": "3:25:29", "remaining_time": "0:53:56", "throughput": 13607.74, "total_tokens": 167772160}
81
+ {"current_steps": 81, "total_steps": 101, "loss": 0.7636, "lr": 4.683552154293747e-06, "epoch": 0.7990135635018496, "percentage": 80.2, "elapsed_time": "3:28:02", "remaining_time": "0:51:22", "throughput": 13608.08, "total_tokens": 169869312}
82
+ {"current_steps": 82, "total_steps": 101, "loss": 0.7818, "lr": 4.240300430880062e-06, "epoch": 0.8088779284833539, "percentage": 81.19, "elapsed_time": "3:30:38", "remaining_time": "0:48:48", "throughput": 13607.0, "total_tokens": 171966464}
83
+ {"current_steps": 83, "total_steps": 101, "loss": 0.7914, "lr": 3.817132376055565e-06, "epoch": 0.8187422934648582, "percentage": 82.18, "elapsed_time": "3:33:11", "remaining_time": "0:46:14", "throughput": 13607.35, "total_tokens": 174063616}
84
+ {"current_steps": 84, "total_steps": 101, "loss": 0.7985, "lr": 3.4144573775834134e-06, "epoch": 0.8286066584463625, "percentage": 83.17, "elapsed_time": "3:35:45", "remaining_time": "0:43:39", "throughput": 13607.72, "total_tokens": 176160768}
85
+ {"current_steps": 85, "total_steps": 101, "loss": 0.7868, "lr": 3.0326649975182865e-06, "epoch": 0.8384710234278668, "percentage": 84.16, "elapsed_time": "3:38:19", "remaining_time": "0:41:05", "throughput": 13608.19, "total_tokens": 178257920}
86
+ {"current_steps": 86, "total_steps": 101, "loss": 0.7972, "lr": 2.672124595330214e-06, "epoch": 0.8483353884093712, "percentage": 85.15, "elapsed_time": "3:40:53", "remaining_time": "0:38:31", "throughput": 13608.54, "total_tokens": 180355072}
87
+ {"current_steps": 87, "total_steps": 101, "loss": 0.7933, "lr": 2.333184970573188e-06, "epoch": 0.8581997533908755, "percentage": 86.14, "elapsed_time": "3:43:26", "remaining_time": "0:35:57", "throughput": 13609.13, "total_tokens": 182452224}
88
+ {"current_steps": 88, "total_steps": 101, "loss": 0.7695, "lr": 2.0161740254440896e-06, "epoch": 0.8680641183723797, "percentage": 87.13, "elapsed_time": "3:45:59", "remaining_time": "0:33:23", "throughput": 13609.89, "total_tokens": 184549376}
89
+ {"current_steps": 89, "total_steps": 101, "loss": 0.7929, "lr": 1.7213984475585144e-06, "epoch": 0.8779284833538841, "percentage": 88.12, "elapsed_time": "3:48:34", "remaining_time": "0:30:49", "throughput": 13609.74, "total_tokens": 186646528}
90
+ {"current_steps": 90, "total_steps": 101, "loss": 0.7995, "lr": 1.4491434132502729e-06, "epoch": 0.8877928483353884, "percentage": 89.11, "elapsed_time": "3:51:07", "remaining_time": "0:28:14", "throughput": 13610.21, "total_tokens": 188743680}
91
+ {"current_steps": 91, "total_steps": 101, "loss": 0.7857, "lr": 1.1996723116817516e-06, "epoch": 0.8976572133168927, "percentage": 90.1, "elapsed_time": "3:53:41", "remaining_time": "0:25:40", "throughput": 13610.41, "total_tokens": 190840832}
92
+ {"current_steps": 92, "total_steps": 101, "loss": 0.8215, "lr": 9.732264900318866e-07, "epoch": 0.9075215782983971, "percentage": 91.09, "elapsed_time": "3:56:15", "remaining_time": "0:23:06", "throughput": 13610.73, "total_tokens": 192937984}
93
+ {"current_steps": 93, "total_steps": 101, "loss": 0.7931, "lr": 7.700250200083469e-07, "epoch": 0.9173859432799013, "percentage": 92.08, "elapsed_time": "3:58:49", "remaining_time": "0:20:32", "throughput": 13611.14, "total_tokens": 195035136}
94
+ {"current_steps": 94, "total_steps": 101, "loss": 0.7927, "lr": 5.90264485909825e-07, "epoch": 0.9272503082614056, "percentage": 93.07, "elapsed_time": "4:01:22", "remaining_time": "0:17:58", "throughput": 13611.37, "total_tokens": 197132288}
95
+ {"current_steps": 95, "total_steps": 101, "loss": 0.7787, "lr": 4.341187944434083e-07, "epoch": 0.93711467324291, "percentage": 94.06, "elapsed_time": "4:03:56", "remaining_time": "0:15:24", "throughput": 13611.55, "total_tokens": 199229440}
96
+ {"current_steps": 96, "total_steps": 101, "loss": 0.7771, "lr": 3.017390064810832e-07, "epoch": 0.9469790382244143, "percentage": 95.05, "elapsed_time": "4:06:32", "remaining_time": "0:12:50", "throughput": 13610.5, "total_tokens": 201326592}
97
+ {"current_steps": 97, "total_steps": 101, "loss": 0.7931, "lr": 1.9325319091808847e-07, "epoch": 0.9568434032059187, "percentage": 96.04, "elapsed_time": "4:09:06", "remaining_time": "0:10:16", "throughput": 13610.2, "total_tokens": 203423744}
98
+ {"current_steps": 98, "total_steps": 101, "loss": 0.7902, "lr": 1.0876630077453487e-07, "epoch": 0.966707768187423, "percentage": 97.03, "elapsed_time": "4:11:40", "remaining_time": "0:07:42", "throughput": 13609.88, "total_tokens": 205520896}
99
+ {"current_steps": 99, "total_steps": 101, "loss": 0.7906, "lr": 4.836007166014178e-08, "epoch": 0.9765721331689272, "percentage": 98.02, "elapsed_time": "4:14:14", "remaining_time": "0:05:08", "throughput": 13610.3, "total_tokens": 207618048}
100
+ {"current_steps": 100, "total_steps": 101, "loss": 0.8083, "lr": 1.2092942700298038e-08, "epoch": 0.9864364981504316, "percentage": 99.01, "elapsed_time": "4:16:47", "remaining_time": "0:02:34", "throughput": 13610.82, "total_tokens": 209715200}
101
+ {"current_steps": 101, "total_steps": 101, "loss": 0.7963, "lr": 0.0, "epoch": 0.9963008631319359, "percentage": 100.0, "elapsed_time": "4:19:21", "remaining_time": "0:00:00", "throughput": 13611.38, "total_tokens": 211812352}
102
+ {"current_steps": 101, "total_steps": 101, "epoch": 0.9963008631319359, "percentage": 100.0, "elapsed_time": "4:19:45", "remaining_time": "0:00:00", "throughput": 13590.34, "total_tokens": 211812352}
trainer_state.json ADDED
@@ -0,0 +1,851 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9963008631319359,
5
+ "eval_steps": 500,
6
+ "global_step": 101,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.009864364981504316,
13
+ "grad_norm": 0.7294987440109253,
14
+ "learning_rate": 4.998790705729971e-05,
15
+ "loss": 1.0213,
16
+ "num_input_tokens_seen": 2097152,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.01972872996300863,
21
+ "grad_norm": 0.5664029717445374,
22
+ "learning_rate": 4.995163992833986e-05,
23
+ "loss": 1.0136,
24
+ "num_input_tokens_seen": 4194304,
25
+ "step": 2
26
+ },
27
+ {
28
+ "epoch": 0.029593094944512947,
29
+ "grad_norm": 0.42022261023521423,
30
+ "learning_rate": 4.989123369922547e-05,
31
+ "loss": 0.9404,
32
+ "num_input_tokens_seen": 6291456,
33
+ "step": 3
34
+ },
35
+ {
36
+ "epoch": 0.03945745992601726,
37
+ "grad_norm": 0.3317222595214844,
38
+ "learning_rate": 4.980674680908192e-05,
39
+ "loss": 0.953,
40
+ "num_input_tokens_seen": 8388608,
41
+ "step": 4
42
+ },
43
+ {
44
+ "epoch": 0.04932182490752158,
45
+ "grad_norm": 0.2700234651565552,
46
+ "learning_rate": 4.969826099351892e-05,
47
+ "loss": 0.9453,
48
+ "num_input_tokens_seen": 10485760,
49
+ "step": 5
50
+ },
51
+ {
52
+ "epoch": 0.059186189889025895,
53
+ "grad_norm": 0.23365087807178497,
54
+ "learning_rate": 4.9565881205556594e-05,
55
+ "loss": 0.9111,
56
+ "num_input_tokens_seen": 12582912,
57
+ "step": 6
58
+ },
59
+ {
60
+ "epoch": 0.0690505548705302,
61
+ "grad_norm": 0.17710435390472412,
62
+ "learning_rate": 4.940973551409018e-05,
63
+ "loss": 0.878,
64
+ "num_input_tokens_seen": 14680064,
65
+ "step": 7
66
+ },
67
+ {
68
+ "epoch": 0.07891491985203453,
69
+ "grad_norm": 0.17090857028961182,
70
+ "learning_rate": 4.922997497999166e-05,
71
+ "loss": 0.914,
72
+ "num_input_tokens_seen": 16777216,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.08877928483353884,
77
+ "grad_norm": 0.18688030540943146,
78
+ "learning_rate": 4.9026773509968115e-05,
79
+ "loss": 0.8649,
80
+ "num_input_tokens_seen": 18874368,
81
+ "step": 9
82
+ },
83
+ {
84
+ "epoch": 0.09864364981504316,
85
+ "grad_norm": 0.19690372049808502,
86
+ "learning_rate": 4.8800327688318246e-05,
87
+ "loss": 0.9029,
88
+ "num_input_tokens_seen": 20971520,
89
+ "step": 10
90
+ },
91
+ {
92
+ "epoch": 0.10850801479654747,
93
+ "grad_norm": 0.16644370555877686,
94
+ "learning_rate": 4.855085658674973e-05,
95
+ "loss": 0.882,
96
+ "num_input_tokens_seen": 23068672,
97
+ "step": 11
98
+ },
99
+ {
100
+ "epoch": 0.11837237977805179,
101
+ "grad_norm": 0.1807110756635666,
102
+ "learning_rate": 4.827860155244149e-05,
103
+ "loss": 0.8438,
104
+ "num_input_tokens_seen": 25165824,
105
+ "step": 12
106
+ },
107
+ {
108
+ "epoch": 0.1282367447595561,
109
+ "grad_norm": 0.16156087815761566,
110
+ "learning_rate": 4.798382597455591e-05,
111
+ "loss": 0.8743,
112
+ "num_input_tokens_seen": 27262976,
113
+ "step": 13
114
+ },
115
+ {
116
+ "epoch": 0.1381011097410604,
117
+ "grad_norm": 0.14602774381637573,
118
+ "learning_rate": 4.7666815029426816e-05,
119
+ "loss": 0.8736,
120
+ "num_input_tokens_seen": 29360128,
121
+ "step": 14
122
+ },
123
+ {
124
+ "epoch": 0.14796547472256474,
125
+ "grad_norm": 0.15224798023700714,
126
+ "learning_rate": 4.732787540466979e-05,
127
+ "loss": 0.8687,
128
+ "num_input_tokens_seen": 31457280,
129
+ "step": 15
130
+ },
131
+ {
132
+ "epoch": 0.15782983970406905,
133
+ "grad_norm": 0.14535664021968842,
134
+ "learning_rate": 4.696733500248172e-05,
135
+ "loss": 0.864,
136
+ "num_input_tokens_seen": 33554432,
137
+ "step": 16
138
+ },
139
+ {
140
+ "epoch": 0.16769420468557336,
141
+ "grad_norm": 0.1372939944267273,
142
+ "learning_rate": 4.658554262241659e-05,
143
+ "loss": 0.8877,
144
+ "num_input_tokens_seen": 35651584,
145
+ "step": 17
146
+ },
147
+ {
148
+ "epoch": 0.17755856966707767,
149
+ "grad_norm": 0.1264754980802536,
150
+ "learning_rate": 4.6182867623944436e-05,
151
+ "loss": 0.8749,
152
+ "num_input_tokens_seen": 37748736,
153
+ "step": 18
154
+ },
155
+ {
156
+ "epoch": 0.187422934648582,
157
+ "grad_norm": 0.11968766152858734,
158
+ "learning_rate": 4.575969956911994e-05,
159
+ "loss": 0.8338,
160
+ "num_input_tokens_seen": 39845888,
161
+ "step": 19
162
+ },
163
+ {
164
+ "epoch": 0.19728729963008632,
165
+ "grad_norm": 0.1143808588385582,
166
+ "learning_rate": 4.531644784570626e-05,
167
+ "loss": 0.8294,
168
+ "num_input_tokens_seen": 41943040,
169
+ "step": 20
170
+ },
171
+ {
172
+ "epoch": 0.20715166461159062,
173
+ "grad_norm": 0.12028194963932037,
174
+ "learning_rate": 4.485354127111884e-05,
175
+ "loss": 0.8666,
176
+ "num_input_tokens_seen": 44040192,
177
+ "step": 21
178
+ },
179
+ {
180
+ "epoch": 0.21701602959309493,
181
+ "grad_norm": 0.11237838119268417,
182
+ "learning_rate": 4.437142767757225e-05,
183
+ "loss": 0.8038,
184
+ "num_input_tokens_seen": 46137344,
185
+ "step": 22
186
+ },
187
+ {
188
+ "epoch": 0.22688039457459927,
189
+ "grad_norm": 0.1187497228384018,
190
+ "learning_rate": 4.387057347883143e-05,
191
+ "loss": 0.8492,
192
+ "num_input_tokens_seen": 48234496,
193
+ "step": 23
194
+ },
195
+ {
196
+ "epoch": 0.23674475955610358,
197
+ "grad_norm": 0.11182423681020737,
198
+ "learning_rate": 4.335146321898651e-05,
199
+ "loss": 0.8047,
200
+ "num_input_tokens_seen": 50331648,
201
+ "step": 24
202
+ },
203
+ {
204
+ "epoch": 0.2466091245376079,
205
+ "grad_norm": 0.118191197514534,
206
+ "learning_rate": 4.281459910368768e-05,
207
+ "loss": 0.8521,
208
+ "num_input_tokens_seen": 52428800,
209
+ "step": 25
210
+ },
211
+ {
212
+ "epoch": 0.2564734895191122,
213
+ "grad_norm": 0.09803211688995361,
214
+ "learning_rate": 4.226050051429367e-05,
215
+ "loss": 0.8133,
216
+ "num_input_tokens_seen": 54525952,
217
+ "step": 26
218
+ },
219
+ {
220
+ "epoch": 0.26633785450061653,
221
+ "grad_norm": 0.10156495869159698,
222
+ "learning_rate": 4.168970350540384e-05,
223
+ "loss": 0.8365,
224
+ "num_input_tokens_seen": 56623104,
225
+ "step": 27
226
+ },
227
+ {
228
+ "epoch": 0.2762022194821208,
229
+ "grad_norm": 0.10211872309446335,
230
+ "learning_rate": 4.110276028625995e-05,
231
+ "loss": 0.8094,
232
+ "num_input_tokens_seen": 58720256,
233
+ "step": 28
234
+ },
235
+ {
236
+ "epoch": 0.28606658446362515,
237
+ "grad_norm": 0.10365650057792664,
238
+ "learning_rate": 4.050023868651938e-05,
239
+ "loss": 0.8174,
240
+ "num_input_tokens_seen": 60817408,
241
+ "step": 29
242
+ },
243
+ {
244
+ "epoch": 0.2959309494451295,
245
+ "grad_norm": 0.09515471011400223,
246
+ "learning_rate": 3.988272160691665e-05,
247
+ "loss": 0.8278,
248
+ "num_input_tokens_seen": 62914560,
249
+ "step": 30
250
+ },
251
+ {
252
+ "epoch": 0.30579531442663377,
253
+ "grad_norm": 0.10051083564758301,
254
+ "learning_rate": 3.925080645534457e-05,
255
+ "loss": 0.8425,
256
+ "num_input_tokens_seen": 65011712,
257
+ "step": 31
258
+ },
259
+ {
260
+ "epoch": 0.3156596794081381,
261
+ "grad_norm": 0.0998254269361496,
262
+ "learning_rate": 3.8605104568900685e-05,
263
+ "loss": 0.8145,
264
+ "num_input_tokens_seen": 67108864,
265
+ "step": 32
266
+ },
267
+ {
268
+ "epoch": 0.32552404438964244,
269
+ "grad_norm": 0.109571672976017,
270
+ "learning_rate": 3.7946240622458135e-05,
271
+ "loss": 0.8322,
272
+ "num_input_tokens_seen": 69206016,
273
+ "step": 33
274
+ },
275
+ {
276
+ "epoch": 0.3353884093711467,
277
+ "grad_norm": 0.09529263526201248,
278
+ "learning_rate": 3.7274852024333054e-05,
279
+ "loss": 0.8114,
280
+ "num_input_tokens_seen": 71303168,
281
+ "step": 34
282
+ },
283
+ {
284
+ "epoch": 0.34525277435265106,
285
+ "grad_norm": 0.09562862664461136,
286
+ "learning_rate": 3.6591588299633186e-05,
287
+ "loss": 0.8091,
288
+ "num_input_tokens_seen": 73400320,
289
+ "step": 35
290
+ },
291
+ {
292
+ "epoch": 0.35511713933415534,
293
+ "grad_norm": 0.09187028557062149,
294
+ "learning_rate": 3.589711046188428e-05,
295
+ "loss": 0.7743,
296
+ "num_input_tokens_seen": 75497472,
297
+ "step": 36
298
+ },
299
+ {
300
+ "epoch": 0.3649815043156597,
301
+ "grad_norm": 0.09879715740680695,
302
+ "learning_rate": 3.519209037354222e-05,
303
+ "loss": 0.8368,
304
+ "num_input_tokens_seen": 77594624,
305
+ "step": 37
306
+ },
307
+ {
308
+ "epoch": 0.374845869297164,
309
+ "grad_norm": 0.0839247927069664,
310
+ "learning_rate": 3.447721009600949e-05,
311
+ "loss": 0.8177,
312
+ "num_input_tokens_seen": 79691776,
313
+ "step": 38
314
+ },
315
+ {
316
+ "epoch": 0.3847102342786683,
317
+ "grad_norm": 0.09094128012657166,
318
+ "learning_rate": 3.3753161229784766e-05,
319
+ "loss": 0.8109,
320
+ "num_input_tokens_seen": 81788928,
321
+ "step": 39
322
+ },
323
+ {
324
+ "epoch": 0.39457459926017263,
325
+ "grad_norm": 0.09645260125398636,
326
+ "learning_rate": 3.302064424538419e-05,
327
+ "loss": 0.827,
328
+ "num_input_tokens_seen": 83886080,
329
+ "step": 40
330
+ },
331
+ {
332
+ "epoch": 0.40443896424167697,
333
+ "grad_norm": 0.08931674808263779,
334
+ "learning_rate": 3.228036780568131e-05,
335
+ "loss": 0.8167,
336
+ "num_input_tokens_seen": 85983232,
337
+ "step": 41
338
+ },
339
+ {
340
+ "epoch": 0.41430332922318125,
341
+ "grad_norm": 0.08245021849870682,
342
+ "learning_rate": 3.153304808032152e-05,
343
+ "loss": 0.8073,
344
+ "num_input_tokens_seen": 88080384,
345
+ "step": 42
346
+ },
347
+ {
348
+ "epoch": 0.4241676942046856,
349
+ "grad_norm": 0.08803369104862213,
350
+ "learning_rate": 3.077940805287425e-05,
351
+ "loss": 0.7793,
352
+ "num_input_tokens_seen": 90177536,
353
+ "step": 43
354
+ },
355
+ {
356
+ "epoch": 0.43403205918618987,
357
+ "grad_norm": 0.08340983092784882,
358
+ "learning_rate": 3.0020176821392964e-05,
359
+ "loss": 0.8096,
360
+ "num_input_tokens_seen": 92274688,
361
+ "step": 44
362
+ },
363
+ {
364
+ "epoch": 0.4438964241676942,
365
+ "grad_norm": 0.09057221561670303,
366
+ "learning_rate": 2.925608889305997e-05,
367
+ "loss": 0.8212,
368
+ "num_input_tokens_seen": 94371840,
369
+ "step": 45
370
+ },
371
+ {
372
+ "epoch": 0.45376078914919854,
373
+ "grad_norm": 0.08546467870473862,
374
+ "learning_rate": 2.848788347359808e-05,
375
+ "loss": 0.8151,
376
+ "num_input_tokens_seen": 96468992,
377
+ "step": 46
378
+ },
379
+ {
380
+ "epoch": 0.4636251541307028,
381
+ "grad_norm": 0.08286646008491516,
382
+ "learning_rate": 2.7716303752136864e-05,
383
+ "loss": 0.8331,
384
+ "num_input_tokens_seen": 98566144,
385
+ "step": 47
386
+ },
387
+ {
388
+ "epoch": 0.47348951911220716,
389
+ "grad_norm": 0.08105745166540146,
390
+ "learning_rate": 2.6942096182225162e-05,
391
+ "loss": 0.8003,
392
+ "num_input_tokens_seen": 100663296,
393
+ "step": 48
394
+ },
395
+ {
396
+ "epoch": 0.4833538840937115,
397
+ "grad_norm": 0.07993409782648087,
398
+ "learning_rate": 2.616600975968544e-05,
399
+ "loss": 0.8214,
400
+ "num_input_tokens_seen": 102760448,
401
+ "step": 49
402
+ },
403
+ {
404
+ "epoch": 0.4932182490752158,
405
+ "grad_norm": 0.08382619917392731,
406
+ "learning_rate": 2.5388795298008776e-05,
407
+ "loss": 0.8118,
408
+ "num_input_tokens_seen": 104857600,
409
+ "step": 50
410
+ },
411
+ {
412
+ "epoch": 0.5030826140567201,
413
+ "grad_norm": 0.08271751552820206,
414
+ "learning_rate": 2.4611204701991227e-05,
415
+ "loss": 0.8382,
416
+ "num_input_tokens_seen": 106954752,
417
+ "step": 51
418
+ },
419
+ {
420
+ "epoch": 0.5129469790382244,
421
+ "grad_norm": 0.07375568896532059,
422
+ "learning_rate": 2.3833990240314562e-05,
423
+ "loss": 0.8099,
424
+ "num_input_tokens_seen": 109051904,
425
+ "step": 52
426
+ },
427
+ {
428
+ "epoch": 0.5228113440197287,
429
+ "grad_norm": 0.07492537051439285,
430
+ "learning_rate": 2.3057903817774843e-05,
431
+ "loss": 0.7914,
432
+ "num_input_tokens_seen": 111149056,
433
+ "step": 53
434
+ },
435
+ {
436
+ "epoch": 0.5326757090012331,
437
+ "grad_norm": 0.07812082767486572,
438
+ "learning_rate": 2.2283696247863135e-05,
439
+ "loss": 0.8104,
440
+ "num_input_tokens_seen": 113246208,
441
+ "step": 54
442
+ },
443
+ {
444
+ "epoch": 0.5425400739827374,
445
+ "grad_norm": 0.07944825291633606,
446
+ "learning_rate": 2.1512116526401928e-05,
447
+ "loss": 0.8125,
448
+ "num_input_tokens_seen": 115343360,
449
+ "step": 55
450
+ },
451
+ {
452
+ "epoch": 0.5524044389642416,
453
+ "grad_norm": 0.07352437824010849,
454
+ "learning_rate": 2.0743911106940034e-05,
455
+ "loss": 0.8198,
456
+ "num_input_tokens_seen": 117440512,
457
+ "step": 56
458
+ },
459
+ {
460
+ "epoch": 0.562268803945746,
461
+ "grad_norm": 0.07700145244598389,
462
+ "learning_rate": 1.9979823178607042e-05,
463
+ "loss": 0.8019,
464
+ "num_input_tokens_seen": 119537664,
465
+ "step": 57
466
+ },
467
+ {
468
+ "epoch": 0.5721331689272503,
469
+ "grad_norm": 0.07811249792575836,
470
+ "learning_rate": 1.9220591947125766e-05,
471
+ "loss": 0.8141,
472
+ "num_input_tokens_seen": 121634816,
473
+ "step": 58
474
+ },
475
+ {
476
+ "epoch": 0.5819975339087546,
477
+ "grad_norm": 0.07361660897731781,
478
+ "learning_rate": 1.846695191967849e-05,
479
+ "loss": 0.7985,
480
+ "num_input_tokens_seen": 123731968,
481
+ "step": 59
482
+ },
483
+ {
484
+ "epoch": 0.591861898890259,
485
+ "grad_norm": 0.07933210581541061,
486
+ "learning_rate": 1.7719632194318702e-05,
487
+ "loss": 0.7998,
488
+ "num_input_tokens_seen": 125829120,
489
+ "step": 60
490
+ },
491
+ {
492
+ "epoch": 0.6017262638717632,
493
+ "grad_norm": 0.0801980197429657,
494
+ "learning_rate": 1.6979355754615814e-05,
495
+ "loss": 0.7988,
496
+ "num_input_tokens_seen": 127926272,
497
+ "step": 61
498
+ },
499
+ {
500
+ "epoch": 0.6115906288532675,
501
+ "grad_norm": 0.07316846400499344,
502
+ "learning_rate": 1.6246838770215233e-05,
503
+ "loss": 0.8016,
504
+ "num_input_tokens_seen": 130023424,
505
+ "step": 62
506
+ },
507
+ {
508
+ "epoch": 0.6214549938347719,
509
+ "grad_norm": 0.0750172808766365,
510
+ "learning_rate": 1.552278990399052e-05,
511
+ "loss": 0.8162,
512
+ "num_input_tokens_seen": 132120576,
513
+ "step": 63
514
+ },
515
+ {
516
+ "epoch": 0.6313193588162762,
517
+ "grad_norm": 0.07336606830358505,
518
+ "learning_rate": 1.4807909626457782e-05,
519
+ "loss": 0.8258,
520
+ "num_input_tokens_seen": 134217728,
521
+ "step": 64
522
+ },
523
+ {
524
+ "epoch": 0.6411837237977805,
525
+ "grad_norm": 0.07929656654596329,
526
+ "learning_rate": 1.4102889538115723e-05,
527
+ "loss": 0.8063,
528
+ "num_input_tokens_seen": 136314880,
529
+ "step": 65
530
+ },
531
+ {
532
+ "epoch": 0.6510480887792849,
533
+ "grad_norm": 0.08207987248897552,
534
+ "learning_rate": 1.3408411700366813e-05,
535
+ "loss": 0.8116,
536
+ "num_input_tokens_seen": 138412032,
537
+ "step": 66
538
+ },
539
+ {
540
+ "epoch": 0.6609124537607891,
541
+ "grad_norm": 0.07338231056928635,
542
+ "learning_rate": 1.2725147975666948e-05,
543
+ "loss": 0.785,
544
+ "num_input_tokens_seen": 140509184,
545
+ "step": 67
546
+ },
547
+ {
548
+ "epoch": 0.6707768187422934,
549
+ "grad_norm": 0.08025672286748886,
550
+ "learning_rate": 1.2053759377541866e-05,
551
+ "loss": 0.8049,
552
+ "num_input_tokens_seen": 142606336,
553
+ "step": 68
554
+ },
555
+ {
556
+ "epoch": 0.6806411837237978,
557
+ "grad_norm": 0.07760636508464813,
558
+ "learning_rate": 1.1394895431099314e-05,
559
+ "loss": 0.8034,
560
+ "num_input_tokens_seen": 144703488,
561
+ "step": 69
562
+ },
563
+ {
564
+ "epoch": 0.6905055487053021,
565
+ "grad_norm": 0.07995034009218216,
566
+ "learning_rate": 1.0749193544655434e-05,
567
+ "loss": 0.7949,
568
+ "num_input_tokens_seen": 146800640,
569
+ "step": 70
570
+ },
571
+ {
572
+ "epoch": 0.7003699136868065,
573
+ "grad_norm": 0.07639381289482117,
574
+ "learning_rate": 1.0117278393083358e-05,
575
+ "loss": 0.8024,
576
+ "num_input_tokens_seen": 148897792,
577
+ "step": 71
578
+ },
579
+ {
580
+ "epoch": 0.7102342786683107,
581
+ "grad_norm": 0.0737844705581665,
582
+ "learning_rate": 9.499761313480626e-06,
583
+ "loss": 0.7608,
584
+ "num_input_tokens_seen": 150994944,
585
+ "step": 72
586
+ },
587
+ {
588
+ "epoch": 0.720098643649815,
589
+ "grad_norm": 0.07084383070468903,
590
+ "learning_rate": 8.897239713740058e-06,
591
+ "loss": 0.8012,
592
+ "num_input_tokens_seen": 153092096,
593
+ "step": 73
594
+ },
595
+ {
596
+ "epoch": 0.7299630086313194,
597
+ "grad_norm": 0.07751645892858505,
598
+ "learning_rate": 8.31029649459616e-06,
599
+ "loss": 0.7688,
600
+ "num_input_tokens_seen": 155189248,
601
+ "step": 74
602
+ },
603
+ {
604
+ "epoch": 0.7398273736128237,
605
+ "grad_norm": 0.07183132320642471,
606
+ "learning_rate": 7.739499485706334e-06,
607
+ "loss": 0.8023,
608
+ "num_input_tokens_seen": 157286400,
609
+ "step": 75
610
+ },
611
+ {
612
+ "epoch": 0.749691738594328,
613
+ "grad_norm": 0.07271506637334824,
614
+ "learning_rate": 7.185400896312328e-06,
615
+ "loss": 0.7809,
616
+ "num_input_tokens_seen": 159383552,
617
+ "step": 76
618
+ },
619
+ {
620
+ "epoch": 0.7595561035758323,
621
+ "grad_norm": 0.07422608137130737,
622
+ "learning_rate": 6.648536781013495e-06,
623
+ "loss": 0.8083,
624
+ "num_input_tokens_seen": 161480704,
625
+ "step": 77
626
+ },
627
+ {
628
+ "epoch": 0.7694204685573366,
629
+ "grad_norm": 0.07867728918790817,
630
+ "learning_rate": 6.12942652116858e-06,
631
+ "loss": 0.7903,
632
+ "num_input_tokens_seen": 163577856,
633
+ "step": 78
634
+ },
635
+ {
636
+ "epoch": 0.7792848335388409,
637
+ "grad_norm": 0.07830856740474701,
638
+ "learning_rate": 5.628572322427755e-06,
639
+ "loss": 0.7904,
640
+ "num_input_tokens_seen": 165675008,
641
+ "step": 79
642
+ },
643
+ {
644
+ "epoch": 0.7891491985203453,
645
+ "grad_norm": 0.07836252450942993,
646
+ "learning_rate": 5.1464587288811624e-06,
647
+ "loss": 0.797,
648
+ "num_input_tokens_seen": 167772160,
649
+ "step": 80
650
+ },
651
+ {
652
+ "epoch": 0.7990135635018496,
653
+ "grad_norm": 0.07151419669389725,
654
+ "learning_rate": 4.683552154293747e-06,
655
+ "loss": 0.7636,
656
+ "num_input_tokens_seen": 169869312,
657
+ "step": 81
658
+ },
659
+ {
660
+ "epoch": 0.8088779284833539,
661
+ "grad_norm": 0.07672585546970367,
662
+ "learning_rate": 4.240300430880062e-06,
663
+ "loss": 0.7818,
664
+ "num_input_tokens_seen": 171966464,
665
+ "step": 82
666
+ },
667
+ {
668
+ "epoch": 0.8187422934648582,
669
+ "grad_norm": 0.08120947331190109,
670
+ "learning_rate": 3.817132376055565e-06,
671
+ "loss": 0.7914,
672
+ "num_input_tokens_seen": 174063616,
673
+ "step": 83
674
+ },
675
+ {
676
+ "epoch": 0.8286066584463625,
677
+ "grad_norm": 0.07581306993961334,
678
+ "learning_rate": 3.4144573775834134e-06,
679
+ "loss": 0.7985,
680
+ "num_input_tokens_seen": 176160768,
681
+ "step": 84
682
+ },
683
+ {
684
+ "epoch": 0.8384710234278668,
685
+ "grad_norm": 0.08039968460798264,
686
+ "learning_rate": 3.0326649975182865e-06,
687
+ "loss": 0.7868,
688
+ "num_input_tokens_seen": 178257920,
689
+ "step": 85
690
+ },
691
+ {
692
+ "epoch": 0.8483353884093712,
693
+ "grad_norm": 0.07282786071300507,
694
+ "learning_rate": 2.672124595330214e-06,
695
+ "loss": 0.7972,
696
+ "num_input_tokens_seen": 180355072,
697
+ "step": 86
698
+ },
699
+ {
700
+ "epoch": 0.8581997533908755,
701
+ "grad_norm": 0.07389923185110092,
702
+ "learning_rate": 2.333184970573188e-06,
703
+ "loss": 0.7933,
704
+ "num_input_tokens_seen": 182452224,
705
+ "step": 87
706
+ },
707
+ {
708
+ "epoch": 0.8680641183723797,
709
+ "grad_norm": 0.07451856881380081,
710
+ "learning_rate": 2.0161740254440896e-06,
711
+ "loss": 0.7695,
712
+ "num_input_tokens_seen": 184549376,
713
+ "step": 88
714
+ },
715
+ {
716
+ "epoch": 0.8779284833538841,
717
+ "grad_norm": 0.0740065649151802,
718
+ "learning_rate": 1.7213984475585144e-06,
719
+ "loss": 0.7929,
720
+ "num_input_tokens_seen": 186646528,
721
+ "step": 89
722
+ },
723
+ {
724
+ "epoch": 0.8877928483353884,
725
+ "grad_norm": 0.07559362053871155,
726
+ "learning_rate": 1.4491434132502729e-06,
727
+ "loss": 0.7995,
728
+ "num_input_tokens_seen": 188743680,
729
+ "step": 90
730
+ },
731
+ {
732
+ "epoch": 0.8976572133168927,
733
+ "grad_norm": 0.07598087936639786,
734
+ "learning_rate": 1.1996723116817516e-06,
735
+ "loss": 0.7857,
736
+ "num_input_tokens_seen": 190840832,
737
+ "step": 91
738
+ },
739
+ {
740
+ "epoch": 0.9075215782983971,
741
+ "grad_norm": 0.0752101019024849,
742
+ "learning_rate": 9.732264900318866e-07,
743
+ "loss": 0.8215,
744
+ "num_input_tokens_seen": 192937984,
745
+ "step": 92
746
+ },
747
+ {
748
+ "epoch": 0.9173859432799013,
749
+ "grad_norm": 0.07947240769863129,
750
+ "learning_rate": 7.700250200083469e-07,
751
+ "loss": 0.7931,
752
+ "num_input_tokens_seen": 195035136,
753
+ "step": 93
754
+ },
755
+ {
756
+ "epoch": 0.9272503082614056,
757
+ "grad_norm": 0.07513375580310822,
758
+ "learning_rate": 5.90264485909825e-07,
759
+ "loss": 0.7927,
760
+ "num_input_tokens_seen": 197132288,
761
+ "step": 94
762
+ },
763
+ {
764
+ "epoch": 0.93711467324291,
765
+ "grad_norm": 0.0716259703040123,
766
+ "learning_rate": 4.341187944434083e-07,
767
+ "loss": 0.7787,
768
+ "num_input_tokens_seen": 199229440,
769
+ "step": 95
770
+ },
771
+ {
772
+ "epoch": 0.9469790382244143,
773
+ "grad_norm": 0.07607847452163696,
774
+ "learning_rate": 3.017390064810832e-07,
775
+ "loss": 0.7771,
776
+ "num_input_tokens_seen": 201326592,
777
+ "step": 96
778
+ },
779
+ {
780
+ "epoch": 0.9568434032059187,
781
+ "grad_norm": 0.07854241132736206,
782
+ "learning_rate": 1.9325319091808847e-07,
783
+ "loss": 0.7931,
784
+ "num_input_tokens_seen": 203423744,
785
+ "step": 97
786
+ },
787
+ {
788
+ "epoch": 0.966707768187423,
789
+ "grad_norm": 0.07781317085027695,
790
+ "learning_rate": 1.0876630077453487e-07,
791
+ "loss": 0.7902,
792
+ "num_input_tokens_seen": 205520896,
793
+ "step": 98
794
+ },
795
+ {
796
+ "epoch": 0.9765721331689272,
797
+ "grad_norm": 0.07628636062145233,
798
+ "learning_rate": 4.836007166014178e-08,
799
+ "loss": 0.7906,
800
+ "num_input_tokens_seen": 207618048,
801
+ "step": 99
802
+ },
803
+ {
804
+ "epoch": 0.9864364981504316,
805
+ "grad_norm": 0.07593634724617004,
806
+ "learning_rate": 1.2092942700298038e-08,
807
+ "loss": 0.8083,
808
+ "num_input_tokens_seen": 209715200,
809
+ "step": 100
810
+ },
811
+ {
812
+ "epoch": 0.9963008631319359,
813
+ "grad_norm": 0.074070043861866,
814
+ "learning_rate": 0.0,
815
+ "loss": 0.7963,
816
+ "num_input_tokens_seen": 211812352,
817
+ "step": 101
818
+ },
819
+ {
820
+ "epoch": 0.9963008631319359,
821
+ "num_input_tokens_seen": 211812352,
822
+ "step": 101,
823
+ "total_flos": 8.985866598858359e+18,
824
+ "train_loss": 0.8237513356869763,
825
+ "train_runtime": 15586.605,
826
+ "train_samples_per_second": 3.328,
827
+ "train_steps_per_second": 0.006
828
+ }
829
+ ],
830
+ "logging_steps": 1,
831
+ "max_steps": 101,
832
+ "num_input_tokens_seen": 211812352,
833
+ "num_train_epochs": 1,
834
+ "save_steps": 500,
835
+ "stateful_callbacks": {
836
+ "TrainerControl": {
837
+ "args": {
838
+ "should_epoch_stop": false,
839
+ "should_evaluate": false,
840
+ "should_log": false,
841
+ "should_save": true,
842
+ "should_training_stop": true
843
+ },
844
+ "attributes": {}
845
+ }
846
+ },
847
+ "total_flos": 8.985866598858359e+18,
848
+ "train_batch_size": 16,
849
+ "trial_name": null,
850
+ "trial_params": null
851
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66830b228abfb3acf930153489ae5bf2891dfe330303465eb4ee5f20a2d34b89
3
+ size 5624
training_args.yaml ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apollo_rank: 256
2
+ apollo_scale: 1
3
+ apollo_target: all
4
+ apollo_update_interval: 200
5
+ bf16: true
6
+ cutoff_len: 4096
7
+ dataset: codes_330k_ns
8
+ dataset_dir: data
9
+ ddp_timeout: 180000000
10
+ do_train: true
11
+ enable_liger_kernel: true
12
+ finetuning_type: freeze
13
+ flash_attn: auto
14
+ freeze_trainable_layers: 2
15
+ freeze_trainable_modules: all
16
+ gradient_accumulation_steps: 8
17
+ include_num_input_tokens_seen: true
18
+ learning_rate: 5.0e-05
19
+ logging_steps: 1
20
+ lr_scheduler_type: cosine
21
+ max_grad_norm: 1.0
22
+ max_samples: 50000000
23
+ model_name_or_path: Qwen/Qwen2.5-Coder-7B-Instruct
24
+ neat_packing: true
25
+ num_train_epochs: 1.0
26
+ output_dir: saves/Qwen2.5-Coder-7B-Instruct/freeze/qwen_ns
27
+ packing: true
28
+ per_device_train_batch_size: 16
29
+ plot_loss: true
30
+ preprocessing_num_workers: 16
31
+ report_to: none
32
+ rope_scaling: llama3
33
+ save_steps: 500
34
+ stage: sft
35
+ template: qwen
36
+ trust_remote_code: true
37
+ use_apollo: true
38
+ use_llama_pro: true
39
+ warmup_steps: 0
training_loss.png ADDED
vocab.json ADDED
The diff for this file is too large to render. See raw diff