File size: 28,558 Bytes
c923988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
import argparse
import json
import os
from pathlib import Path
import numpy as np
import torch
import sacrebleu
from datasets import load_dataset
from torch.utils.data import Dataset, ConcatDataset
from tqdm import tqdm
from transformers import (
AutoProcessor,
AutoModel,
BatchFeature,
Trainer,
TrainingArguments,
StoppingCriteria,
StoppingCriteriaList,
)
from collections import defaultdict
import soundfile as sf
from datasets import Audio
import random
class BaseAudioDataset(Dataset):
def __init__(self, processor, split, sampling_rate=16000, debug=False):
self.processor = processor
self.training = "train" in split
self.debug = debug
self.sampling_rate = sampling_rate
self.name = ""
def set_dataset_name(self, name):
self.name = name
@staticmethod
def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
original_size = len(data)
data = data.cast_column(audio_field, Audio(decode=False))
def identify_corrupted_files(example):
try:
sf.read(example[audio_field]["path"])
for field in text_fields:
if field in example and example[field].replace('"', '') == "":
return False
return True
except Exception:
return False
data = data.filter(identify_corrupted_files, num_proc=16)
validated_size = len(data)
# Audio Decoding
data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
if debug:
print(f"Dataset: {dataset_name}")
print(f"Original data nums: {original_size}")
print(f"After filtering data nums: {validated_size}")
print(f"Filtering ratio: {validated_size/original_size:.2%}")
return data
@staticmethod
def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
original_size = len(data)
def filter_audio_by_length(example):
try:
audio = example[audio_field]['array']
channel = 1
if hasattr(audio, 'ndim') and audio.ndim > 1:
channel = audio.ndim
audio = audio.squeeze()
audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
return min_sec <= audio_length <= max_sec
except Exception as e:
if debug:
print(f"Error : {str(e)[:100]}... - sample excluded")
return False
data = data.filter(filter_audio_by_length, num_proc=16)
filtered_size = len(data)
if debug:
print(f"Before Length Filtering data nums: {original_size}")
print(f"After Length Filtering data nums: {filtered_size}")
print(f"Filtering ratio: {filtered_size/original_size:.2%}")
return data
def prepare_model_inputs(self, audio_array, instruction, answer_text):
user_message = {
'role': 'user',
'content': '<start_of_audio>' + instruction,
}
prompt = self.processor.tokenizer.apply_chat_template(
[user_message], tokenize=False, add_generation_prompt=True, add_bos=True
)
inputs = self.processor(
text=prompt,
audio=[audio_array],
add_special_tokens=False,
return_tensors='pt'
)
answer = f"{answer_text}{ANSWER_SUFFIX}"
answer_ids = self.processor.tokenizer(answer, add_special_tokens=False, return_tensors='pt').input_ids
if self.debug:
self.debug = False
task_type = 'AST' if hasattr(self, 'ast') and self.ast else 'ASR'
lang_info = f" - {self.lang}" if hasattr(self, 'lang') else ""
print(f"{task_type}{lang_info}\nPROMPT: {prompt}\nINPUT: {self.processor.decode(inputs.input_ids[0], skip_special_tokens=False)}\nANSWER: {self.processor.decode(answer_ids[0], skip_special_tokens=False)}\n")
print(f"INPUT_MODE: {inputs.input_modes[0].item()}")
if self.training:
input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1)
labels = torch.full_like(input_ids, _IGNORE_INDEX)
labels[:, -answer_ids.shape[1]:] = answer_ids
padding = torch.zeros((inputs.token_type_ids.shape[0], answer_ids.shape[1]))
token_type_ids = torch.cat([inputs.token_type_ids, padding], dim=1)
else:
input_ids = inputs.input_ids
labels = answer_ids
token_type_ids = inputs.token_type_ids
return {
'input_ids': input_ids,
'labels': labels,
'token_type_ids': token_type_ids,
'input_audio_embeds': inputs.input_audio_embeds,
'audio_embed_sizes': inputs.audio_embed_sizes,
'input_modes': inputs.input_modes,
}
# CoVoST2 Dataset Class
class CoVoSTDataset(BaseAudioDataset):
def __init__(self, processor, data_dir, split, ast=False,
lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name("CoVoST")
self.ast = ast
self.lang = lang[0]
self.data = load_dataset("junnei/covost2",
lang[0],
data_dir=data_dir,
split=split,
trust_remote_code=True
)
text_fields = ["sentence", "translation"] if ast else ["sentence"]
self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# Instruction Setting
self.instruction = random.choice(INSTRUCTION["ast"]).format(lang[1]) if ast else random.choice(INSTRUCTION["asr"])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
if self.ast:
answer_text = data["translation"]
else:
answer_text = data["sentence"].replace('"', '')
return self.prepare_model_inputs(
data["audio"]["array"],
self.instruction,
answer_text
)
# Zeroth Korean Dataset Class
class ZerothKoreanDataset(BaseAudioDataset):
def __init__(self, processor, split, sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name("Zeroth")
# only ASR
self.ast = False
self.lang = "ko"
# load dataset
self.data = load_dataset("Bingsu/zeroth-korean",
split=split,
trust_remote_code=True
)
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# Instruction Setting
self.instruction = random.choice(INSTRUCTION["asr"])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
# Zeroth Korean is only for ASR
answer_text = data["text"].replace('"', '')
return self.prepare_model_inputs(
data["audio"]["array"],
self.instruction,
answer_text
)
# Libri Speech Dataset Class
class LibriSpeechDataset(BaseAudioDataset):
def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name(f"LibriSpeech_{subset}")
# only ASR
self.ast = False
self.lang = "en"
# load dataset
self.data = load_dataset("fixie-ai/librispeech_asr",
subset,
split=split,
trust_remote_code=True
)
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# Instruction Setting
self.instruction = random.choice(INSTRUCTION["asr"])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
# Libri Speech is only for ASR
answer_text = data["text"].replace('"', '')
return self.prepare_model_inputs(
data["audio"]["array"],
self.instruction,
answer_text
)
# Fleurs Dataset Class
class FleursDataset(BaseAudioDataset):
def __init__(self, processor, split, source_lang, target_lang=None,
mode="asr", sampling_rate=16000, debug=False):
super().__init__(processor, split, sampling_rate, debug)
self.set_dataset_name("Fleurs")
# Mode Setting (ASR or AST)
if mode not in ["asr", "ast"]:
raise ValueError("mode must be 'asr' or 'ast'.")
self.mode = mode
self.ast = (mode == "ast")
self.source_lang = source_lang
# Language name mapping (expand if needed)
self.lang_names = {
'en_us': 'English', 'ko_kr': 'Korean'
}
# load dataset - source language dataset
self.data = load_dataset("google/fleurs",
source_lang,
split=split,
trust_remote_code=True
)
# (Optional) Audio length Filtering
self.data = self.filter_by_audio_length(self.data, "audio")
# When AST mode, load target language dataset.
if self.ast:
if target_lang is None:
raise ValueError("AST mode requires target_lang.")
self.target_lang = target_lang
self.lang = f"{source_lang}_{target_lang}"
# load dataset - target language dataset (for translation)
target_data = load_dataset("google/fleurs",
target_lang,
split=split,
trust_remote_code=True
)
source_dict = {item['id']: item for item in self.data}
target_dict = {item['id']: item for item in target_data}
# only Common ID, add translation fields
common_ids = set(source_dict.keys()) & set(target_dict.keys())
print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
self.data = [
{**source_dict[id], 'translation': target_dict[id]['transcription']}
for id in common_ids
]
# Instruction Setting - use target language name
target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
self.instruction = random.choice(INSTRUCTION["ast"]).format(target_lang_name)
else:
# ASR mode
self.lang = source_lang
self.instruction = random.choice(INSTRUCTION["asr"])
if self.debug:
print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
if self.ast:
print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
print(f"dataset size: {len(self.data)}")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
audio_array = data["audio"]["array"]
if self.ast:
answer_text = data["translation"]
else:
answer_text = data["transcription"]
return self.prepare_model_inputs(
audio_array,
self.instruction,
answer_text
)
def covost_collate_fn(batch):
input_ids_list = []
labels_list = []
token_type_ids_list = []
input_audio_embeds_list = []
audio_embed_sizes_list = []
audio_attention_mask_list = []
input_modes_list = []
for inputs in batch:
input_ids_list.append(inputs['input_ids'][0])
labels_list.append(inputs['labels'][0])
token_type_ids_list.append(inputs['token_type_ids'][0])
input_audio_embeds_list.append(inputs['input_audio_embeds'])
audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
audio_attention_mask_list.append(
inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
)
input_modes_list.append(inputs['input_modes'])
try:
token_type_ids = pad_sequence(token_type_ids_list, padding_side='left', padding_value=0)
input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
labels = pad_sequence(labels_list, padding_side='left', padding_value=0)
audio_attention_mask = (
pad_sequence(audio_attention_mask_list, padding_side='left', padding_value=False)
if len(audio_attention_mask_list) > 1
else None
)
except Exception as e:
print(e)
print(input_ids_list)
print(labels_list)
raise
attention_mask = (input_ids != 0).long()
input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
audio_embed_sizes = torch.cat(audio_embed_sizes_list)
input_modes = torch.cat(input_modes_list)
return BatchFeature(
{
'input_ids': input_ids,
'labels': labels,
'token_type_ids': token_type_ids,
'attention_mask': attention_mask,
'input_audio_embeds': input_audio_embeds,
'audio_embed_sizes': audio_embed_sizes,
'audio_attention_mask': audio_attention_mask,
'input_modes': input_modes,
}
)
def pad_sequence(sequences, padding_side='left', padding_value=0):
"""
Pad a list of sequences to the same length.
sequences: list of tensors in [seq_len, *] shape
"""
assert padding_side in ['right', 'left']
max_size = sequences[0].size()
trailing_dims = max_size[1:]
max_len = max(len(seq) for seq in sequences)
batch_size = len(sequences)
output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
for i, seq in enumerate(sequences):
length = seq.size(0)
if padding_side == 'right':
output.data[i, :length] = seq
else:
output.data[i, -length:] = seq
return output
def cat_with_pad(tensors, dim, padding_value=0):
"""
cat along dim, while pad to max for all other dims
"""
ndim = tensors[0].dim()
assert all(
t.dim() == ndim for t in tensors[1:]
), 'All tensors must have the same number of dimensions'
out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
out_size[dim] = sum(t.shape[dim] for t in tensors)
output = tensors[0].new_full(out_size, padding_value)
index = 0
for t in tensors:
# Create a slice list where every dimension except dim is full slice
slices = [slice(0, t.shape[d]) for d in range(ndim)]
# Update only the concat dimension slice
slices[dim] = slice(index, index + t.shape[dim])
output[slices] = t
index += t.shape[dim]
return output
def count_parameters_by_module(model):
# dictionary for parameters number by modules
module_params = defaultdict(lambda: {"total": 0, "trainable": 0})
# all params
total_params = 0
total_trainable_params = 0
# Check Embedding Token masks
embedding_masks = {}
for name, param in model.named_parameters():
if 'embed_tokens.weight' in name and hasattr(param, '_backward_hooks') and param._backward_hooks:
# check if params has embedding_grad_mask_hook
for hook_id, hook_fn in param._backward_hooks.items():
if hook_fn.__code__.co_name == 'embedding_grad_mask_hook':
# Accessing mask variables in the closure of hook functions
for cell in hook_fn.__closure__ or []:
if isinstance(cell.cell_contents, torch.Tensor) and cell.cell_contents.dtype == torch.bool:
# check mask tensor
embedding_masks[name] = ~cell.cell_contents # True : Trainable
# Count params by modules
for name, param in model.named_parameters():
# extracts top module_name
module_name = name.split('.')[0]
param_count = param.numel()
module_params[module_name]["total"] += param_count
total_params += param_count
if param.requires_grad:
# Only count for real trainable params. (with masks)
if name in embedding_masks:
trainable_count = embedding_masks[name].sum().item()
module_params[module_name]["trainable"] += trainable_count
total_trainable_params += trainable_count
else:
module_params[module_name]["trainable"] += param_count
total_trainable_params += param_count
print(f"All Params: {total_params:,}")
print(f"Trainable Params: {total_trainable_params:,} ({total_trainable_params/total_params*100:.2f}%)")
print("\nParams by Module:")
for module_name, counts in sorted(module_params.items()):
trainable_percentage = counts["trainable"] / counts["total"] * 100 if counts["total"] > 0 else 0
total_percentage = counts["total"] / total_params * 100
print(f"- {module_name}:")
print(f" Total: {counts['total']:,} ({total_percentage:.2f}% of model)")
print(f" Trainable: {counts['trainable']:,} ({trainable_percentage:.2f}% of module)")
return module_params
def create_model(model_name_or_path, revision="main", use_flash_attention = False):
model = AutoModel.from_pretrained(
model_name_or_path,
revision=revision,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="flash_attention_2" if use_flash_attention else "eager",
trust_remote_code=True,
)
# Set use_cache to False after model loaded
model.config.use_cache = False
# Freeze all parameters
for param in model.parameters():
param.requires_grad = False
model.set_lora_adapter('speech')
model.to(torch.bfloat16)
# (Optional) unfreeze audio_tower parameters
#for param in model.audio_tower.parameters():
# param.requires_grad = True
# Only unfreeze audio_projector parameters
for param in model.audio_projector.parameters():
param.requires_grad = True
# (Optional) unfreeze audio embed_tokens
train_embed = True
if train_embed:
embed_tokens = model.language_model.model.model.embed_tokens
embed_tokens.weight.requires_grad = False
# Added Speech token IDs (only this tokens be trainable)
trainable_token_ids = [256001, 256002]
embed_tokens.weight.requires_grad = True
mask = torch.ones_like(embed_tokens.weight, dtype=torch.bool)
mask[trainable_token_ids] = False # Trainable Tokens are False (unfreeze), else True (freeze)
# backward hook, with gradient masking
def embedding_grad_mask_hook(grad):
return grad.masked_fill(mask, 0)
embed_tokens.weight.register_hook(embedding_grad_mask_hook)
model.language_model.model.model.embed_tokens = embed_tokens
count_parameters_by_module(model)
return model
os.environ["TOKENIZERS_PARALLELISM"] = "false"
INSTRUCTION = {
"ast": [
"Translate the audio to {0}.",
"Translate the audio clip into {0}.",
"Based on the attached audio, generate a comprehensive {0} translation of the spoken content.",
"Translate the provided audio file into {0}.",
"Convert the audio speech to {0} text.",
"Write an {0} translation of the audio file.",
"Translate spoken words from the audio into {0}.",
"Create an {0} version of the audio content.",
"Produce an accurate {0} translation of the audio.",
"Extract speech from the audio and translate it to {0}.",
"Turn the audio into readable {0} text.",
"Write all spoken content from the audio in {0}.",
"Generate an {0} translation of the speech in the file.",
"Convert the recording into {0} text.",
"Accurately translate the audio recording to {0}.",
"Write down dialogue from the given audio in {0}.",
"Translate all speech in this audio file to {0}.",
"Create an accurate {0} version of the speech.",
"Perform a complete {0} translation of the audio."
],
"asr": [
"Transcribe the audio clip into text.",
"Based on the attached audio, generate a comprehensive text transcription of the spoken content.",
"Transcribe the provided audio file into text.",
"Convert the audio speech to text.",
"Write a transcript of the audio file.",
"Transcribe spoken words from the audio.",
"Create a text version of the audio content.",
"Produce a verbatim transcript of the audio.",
"Extract and transcribe speech from the audio.",
"Turn the audio into readable text.",
"Write all spoken words from the audio.",
"Generate a transcript of the speech in the file.",
"Convert the recording into a text transcript.",
"Accurately transcribe the audio recording.",
"Write down dialogue from the given audio.",
"Transcribe all speech in this audio file.",
"Create an accurate text version of the speech.",
"Perform a complete transcription of the audio."
],
}
ANSWER_SUFFIX = "<end_of_turn>"
_IGNORE_INDEX = -100
model_name_or_path = 'junnei/gemma-3-4b-it-speech'
use_flash_attention = True
output_dir = '/workspace/output'
batch_size = 128
batch_size_per_gpu = 32
learning_rate = 4.0e-5 # 1.0e-4 for fine-tuning
wd = 0.01
num_train_epochs = 5
revision = "main" #"v1.0"
processor = AutoProcessor.from_pretrained(
model_name_or_path,
revision=revision,
trust_remote_code=True,
)
model = create_model(
model_name_or_path,
revision=revision,
use_flash_attention=use_flash_attention,
)
train_datasets = []
# Covost ASR mode (English -> English text)
covost_asr_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/EN",
split="train",
ast=False,
lang=("en_ko", "Korean")
)
train_datasets.append(covost_asr_dataset)
# Covost AST mode (English -> Korean text)
covost_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/EN",
split="train",
ast=True,
lang=("en_ko", "Korean")
)
train_datasets.append(covost_dataset)
# Libri Speech Clean ASR mode (English -> English text)
libri_speech_clean = LibriSpeechDataset(
processor=processor,
subset="clean",
split="train.360"
)
train_datasets.append(libri_speech_clean)
# Libri Speech Other ASR mode (English -> English text)
libri_speech_other = LibriSpeechDataset(
processor=processor,
subset="other",
split="train.500"
)
train_datasets.append(libri_speech_other)
# Fleurs ASR mode (English -> English text)
en_asr_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="en_us", # English
mode="asr"
)
train_datasets.append(en_asr_fleurs)
# Fleurs AST mode (English -> Korean text)
en_ko_ast_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="en_us", # English
target_lang="ko_kr", # Korean
mode="ast"
)
train_datasets.append(en_ko_ast_fleurs)
# Covost ASR mode (Korean -> Korean text)
covost_ko_asr_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/ko",
split="train",
ast=False,
lang=("ko_en", "English")
)
train_datasets.append(covost_ko_asr_dataset)
# Covost AST mode (Korean -> English text)
covost_ko_dataset = CoVoSTDataset(
processor=processor,
data_dir="/workspace/CommonVoice/ko",
split="train",
ast=True,
lang=("ko_en", "English")
)
train_datasets.append(covost_ko_dataset)
# Zeroth ASR mode (Korean -> Korean text)
ko_asr_zeroth = ZerothKoreanDataset(
processor=processor,
split="train"
)
train_datasets.append(ko_asr_zeroth)
# Fleurs ASR mode (Korean -> Korean text)
ko_asr_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="ko_kr", # Korean
mode="asr"
)
train_datasets.append(ko_asr_fleurs)
# Fleurs AST mode (Korean -> English text)
ko_en_ast_fleurs = FleursDataset(
processor=processor,
split="train",
source_lang="ko_kr", # Korean
target_lang="en_us", # English
mode="ast"
)
train_datasets.append(ko_en_ast_fleurs)
print("Count Num of Datasets", len(train_datasets))
print([len(dataset) for dataset in train_datasets])
# ConcatDataset
train_dataset = ConcatDataset(train_datasets) if len(train_datasets) > 1 else train_datasets[0]
print("Count Length of Datas", len(train_dataset))
# Check GPUs
num_gpus = torch.cuda.device_count()
print(f'training on {num_gpus} GPUs')
assert (
batch_size % (num_gpus * batch_size_per_gpu) == 0
), 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = batch_size // (num_gpus * batch_size_per_gpu)
# hard coded training args
training_args = TrainingArguments(
num_train_epochs=num_train_epochs,
per_device_train_batch_size=batch_size_per_gpu,
gradient_checkpointing=True,
gradient_checkpointing_kwargs={'use_reentrant': False},
gradient_accumulation_steps=gradient_accumulation_steps,
optim='adamw_torch',
adam_beta1=0.9,
adam_beta2=0.95,
adam_epsilon=1e-7,
learning_rate=learning_rate,
weight_decay=wd,
max_grad_norm=1.0,
lr_scheduler_type='cosine',
warmup_steps=50,
logging_steps=50,
output_dir=output_dir,
save_strategy='no',
save_total_limit=10,
save_only_model=True,
bf16=True,
fp16=False,
remove_unused_columns=False,
report_to='none',
deepspeed=None,
disable_tqdm=False,
dataloader_num_workers=4,
ddp_find_unused_parameters=True,
)
out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)
# create optimizer only for trainable params
optimizer = torch.optim.AdamW(
filter(lambda p: p.requires_grad, model.parameters()),
lr=learning_rate,
weight_decay=wd,
betas=(0.9, 0.95),
eps=1e-7,
)
# Trainer Setting
trainer = Trainer(
model=model,
args=training_args,
data_collator=covost_collate_fn,
train_dataset=train_dataset,
optimizers=(optimizer, None),
)
trainer.train()
import shutil
# 1. Save LoRA Adapter
model.language_model.model.save_pretrained(output_dir)
# 1-1. Delete Markdown file
markdown_file = os.path.join(output_dir, "README.md")
if os.path.exists(markdown_file):
os.remove(markdown_file)
# 2. Save entire model
model.save_pretrained(output_dir)
# 3. Cleanup Memory
del model
del trainer
__import__('gc').collect()
torch.cuda.empty_cache()
from huggingface_hub import HfApi, login, create_repo, Repository, upload_folder
upload_dir = "/workspace/upload"
# 4. Clone Repo
repo_id = "junnei/gemma-3-4b-it-speech"
branch_name = "main" # 새 브랜치 이름
repo = Repository(local_dir=upload_dir, clone_from = repo_id)
repo.git_checkout(branch_name, create_branch_ok=True)
# 4-1. Move Trained model to Repo
for item in os.listdir(output_dir):
s = os.path.join(output_dir, item)
d = os.path.join(upload_dir, item)
if os.path.isdir(s):
shutil.copytree(s, d, dirs_exist_ok=True)
else:
shutil.copy2(s, d) |