File size: 28,558 Bytes
c923988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
import argparse
import json
import os
from pathlib import Path

import numpy as np
import torch
import sacrebleu

from datasets import load_dataset
from torch.utils.data import Dataset, ConcatDataset
from tqdm import tqdm
from transformers import (
    AutoProcessor,
    AutoModel,
    BatchFeature,
    Trainer,
    TrainingArguments,
    StoppingCriteria,
    StoppingCriteriaList,
)
from collections import defaultdict

import soundfile as sf
from datasets import Audio
import random

class BaseAudioDataset(Dataset):
    def __init__(self, processor, split, sampling_rate=16000, debug=False):
        self.processor = processor
        self.training = "train" in split
        self.debug = debug
        self.sampling_rate = sampling_rate
        self.name = ""
        
    def set_dataset_name(self, name):
        self.name = name

    @staticmethod
    def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
        original_size = len(data)
        
        data = data.cast_column(audio_field, Audio(decode=False))
        
        def identify_corrupted_files(example):
            try:
                sf.read(example[audio_field]["path"])
                
                for field in text_fields:
                    if field in example and example[field].replace('"', '') == "":
                        return False
                return True
            except Exception:
                return False
        
        data = data.filter(identify_corrupted_files, num_proc=16)
        validated_size = len(data)
        
        # Audio Decoding
        data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
        
        if debug:
            print(f"Dataset: {dataset_name}")
            print(f"Original data nums: {original_size}")
            print(f"After filtering data nums: {validated_size}")
            print(f"Filtering ratio: {validated_size/original_size:.2%}")
            
        return data

    @staticmethod
    def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
        original_size = len(data)
        
        def filter_audio_by_length(example):
            try:
                audio = example[audio_field]['array']
                channel = 1
                if hasattr(audio, 'ndim') and audio.ndim > 1:
                    channel = audio.ndim
                    audio = audio.squeeze()
                audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
                return min_sec <= audio_length <= max_sec
            except Exception as e:
                if debug:
                    print(f"Error : {str(e)[:100]}... - sample excluded")
                return False
        
        data = data.filter(filter_audio_by_length, num_proc=16)
        filtered_size = len(data)
        
        if debug:
            print(f"Before Length Filtering data nums: {original_size}")
            print(f"After Length Filtering data nums: {filtered_size}")
            print(f"Filtering ratio: {filtered_size/original_size:.2%}")
            
        return data

    def prepare_model_inputs(self, audio_array, instruction, answer_text):
        user_message = {
            'role': 'user',
            'content': '<start_of_audio>' + instruction,
        }
        prompt = self.processor.tokenizer.apply_chat_template(
            [user_message], tokenize=False, add_generation_prompt=True, add_bos=True
        )
        
        inputs = self.processor(
            text=prompt, 
            audio=[audio_array], 
            add_special_tokens=False, 
            return_tensors='pt'
        )
        
        answer = f"{answer_text}{ANSWER_SUFFIX}"
        answer_ids = self.processor.tokenizer(answer, add_special_tokens=False, return_tensors='pt').input_ids
        
        if self.debug:
            self.debug = False
            task_type = 'AST' if hasattr(self, 'ast') and self.ast else 'ASR'
            lang_info = f" - {self.lang}" if hasattr(self, 'lang') else ""
            print(f"{task_type}{lang_info}\nPROMPT: {prompt}\nINPUT: {self.processor.decode(inputs.input_ids[0], skip_special_tokens=False)}\nANSWER: {self.processor.decode(answer_ids[0], skip_special_tokens=False)}\n")
            print(f"INPUT_MODE: {inputs.input_modes[0].item()}")
        
        if self.training:
            input_ids = torch.cat([inputs.input_ids, answer_ids], dim=1)
            labels = torch.full_like(input_ids, _IGNORE_INDEX)
            labels[:, -answer_ids.shape[1]:] = answer_ids
            padding = torch.zeros((inputs.token_type_ids.shape[0], answer_ids.shape[1]))
            token_type_ids = torch.cat([inputs.token_type_ids, padding], dim=1)
        else:
            input_ids = inputs.input_ids
            labels = answer_ids
            token_type_ids = inputs.token_type_ids
        
        return {
            'input_ids': input_ids,
            'labels': labels,
            'token_type_ids': token_type_ids,
            'input_audio_embeds': inputs.input_audio_embeds,
            'audio_embed_sizes': inputs.audio_embed_sizes,
            'input_modes': inputs.input_modes,
        }

# CoVoST2 Dataset Class
class CoVoSTDataset(BaseAudioDataset):
    def __init__(self, processor, data_dir, split, ast=False,
                 lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)
        
        self.set_dataset_name("CoVoST")
        self.ast = ast
        self.lang = lang[0]
        
        self.data = load_dataset("junnei/covost2", 
                           lang[0],
                           data_dir=data_dir, 
                           split=split,
                           trust_remote_code=True
                           )

        text_fields = ["sentence", "translation"] if ast else ["sentence"]
        self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
        
        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")

        # Instruction Setting
        self.instruction = random.choice(INSTRUCTION["ast"]).format(lang[1]) if ast else random.choice(INSTRUCTION["asr"])
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        
        if self.ast:
            answer_text = data["translation"]
        else:
            answer_text = data["sentence"].replace('"', '')
        
        return self.prepare_model_inputs(
            data["audio"]["array"],
            self.instruction,
            answer_text
        )

# Zeroth Korean Dataset Class
class ZerothKoreanDataset(BaseAudioDataset):
    def __init__(self, processor, split, sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)
        
        self.set_dataset_name("Zeroth")
        # only ASR
        self.ast = False
        self.lang = "ko"
        
        # load dataset
        self.data = load_dataset("Bingsu/zeroth-korean",
                            split=split,
                            trust_remote_code=True
                            )
        
        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")

        # Instruction Setting
        self.instruction = random.choice(INSTRUCTION["asr"])
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        
        # Zeroth Korean is only for ASR
        answer_text = data["text"].replace('"', '')
        
        return self.prepare_model_inputs(
            data["audio"]["array"],
            self.instruction,
            answer_text
        )

# Libri Speech Dataset Class
class LibriSpeechDataset(BaseAudioDataset):
    def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)
        
        self.set_dataset_name(f"LibriSpeech_{subset}")
        # only ASR
        self.ast = False
        self.lang = "en"
        
        # load dataset
        self.data = load_dataset("fixie-ai/librispeech_asr",
                            subset,
                            split=split,
                            trust_remote_code=True
                            )
        
        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")
            
        # Instruction Setting
        self.instruction = random.choice(INSTRUCTION["asr"])
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        
        # Libri Speech is only for ASR
        answer_text = data["text"].replace('"', '')
        
        return self.prepare_model_inputs(
            data["audio"]["array"],
            self.instruction,
            answer_text
        )

# Fleurs Dataset Class
class FleursDataset(BaseAudioDataset):
    def __init__(self, processor, split, source_lang, target_lang=None, 
                 mode="asr", sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)
        
        self.set_dataset_name("Fleurs")
        # Mode Setting (ASR or AST)
        if mode not in ["asr", "ast"]:
            raise ValueError("mode must be 'asr' or 'ast'.")
        
        self.mode = mode
        self.ast = (mode == "ast")
        self.source_lang = source_lang
        
        # Language name mapping (expand if needed)
        self.lang_names = {
            'en_us': 'English', 'ko_kr': 'Korean'
        }
        
        # load dataset - source language dataset
        self.data = load_dataset("google/fleurs",
                            source_lang,
                            split=split,
                            trust_remote_code=True
                            )

        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")
        
        # When AST mode, load target language dataset.
        if self.ast:
            if target_lang is None:
                raise ValueError("AST mode requires target_lang.")
                
            self.target_lang = target_lang
            self.lang = f"{source_lang}_{target_lang}"
            
            # load dataset - target language dataset (for translation)
            target_data = load_dataset("google/fleurs",
                                target_lang,
                                split=split,
                                trust_remote_code=True
                                )
            
            source_dict = {item['id']: item for item in self.data}
            target_dict = {item['id']: item for item in target_data}
            
            # only Common ID, add translation fields
            common_ids = set(source_dict.keys()) & set(target_dict.keys())
            print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
            self.data = [
                {**source_dict[id], 'translation': target_dict[id]['transcription']}
                for id in common_ids
            ]

            # Instruction Setting - use target language name
            target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
            self.instruction = random.choice(INSTRUCTION["ast"]).format(target_lang_name)
        else:
            # ASR mode
            self.lang = source_lang
            self.instruction = random.choice(INSTRUCTION["asr"])

        if self.debug:
            print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
            print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
            if self.ast:
                print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
            print(f"dataset size: {len(self.data)}")
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        audio_array = data["audio"]["array"]

        if self.ast:
            answer_text = data["translation"]
        else:
            answer_text = data["transcription"]
        
        return self.prepare_model_inputs(
            audio_array,
            self.instruction,
            answer_text
        )

def covost_collate_fn(batch):
    input_ids_list = []
    labels_list = []
    token_type_ids_list = []
    input_audio_embeds_list = []
    audio_embed_sizes_list = []
    audio_attention_mask_list = []
    input_modes_list = []
    for inputs in batch:
        input_ids_list.append(inputs['input_ids'][0])
        labels_list.append(inputs['labels'][0])
        token_type_ids_list.append(inputs['token_type_ids'][0])
        input_audio_embeds_list.append(inputs['input_audio_embeds'])
        audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
        audio_attention_mask_list.append(
            inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
        )
        input_modes_list.append(inputs['input_modes'])

    try:
        token_type_ids = pad_sequence(token_type_ids_list, padding_side='left', padding_value=0)
        input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
        labels = pad_sequence(labels_list, padding_side='left', padding_value=0)
        audio_attention_mask = (
            pad_sequence(audio_attention_mask_list, padding_side='left', padding_value=False)
            if len(audio_attention_mask_list) > 1
            else None
        )
    except Exception as e:
        print(e)
        print(input_ids_list)
        print(labels_list)
        raise
    attention_mask = (input_ids != 0).long()
    input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
    audio_embed_sizes = torch.cat(audio_embed_sizes_list)
    input_modes = torch.cat(input_modes_list)
    
    return BatchFeature(
        {
            'input_ids': input_ids,
            'labels': labels,
            'token_type_ids': token_type_ids,
            'attention_mask': attention_mask,
            'input_audio_embeds': input_audio_embeds,
            'audio_embed_sizes': audio_embed_sizes,
            'audio_attention_mask': audio_attention_mask,
            'input_modes': input_modes,
        }
    )

def pad_sequence(sequences, padding_side='left', padding_value=0):
    """
    Pad a list of sequences to the same length.
    sequences: list of tensors in [seq_len, *] shape
    """
    assert padding_side in ['right', 'left']
    max_size = sequences[0].size()
    trailing_dims = max_size[1:]
    max_len = max(len(seq) for seq in sequences)
    batch_size = len(sequences)
    output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
    for i, seq in enumerate(sequences):
        length = seq.size(0)
        if padding_side == 'right':
            output.data[i, :length] = seq
        else:
            output.data[i, -length:] = seq
    return output

def cat_with_pad(tensors, dim, padding_value=0):
    """
    cat along dim, while pad to max for all other dims
    """
    ndim = tensors[0].dim()
    assert all(
        t.dim() == ndim for t in tensors[1:]
    ), 'All tensors must have the same number of dimensions'

    out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
    out_size[dim] = sum(t.shape[dim] for t in tensors)
    output = tensors[0].new_full(out_size, padding_value)

    index = 0
    for t in tensors:
        # Create a slice list where every dimension except dim is full slice
        slices = [slice(0, t.shape[d]) for d in range(ndim)]
        # Update only the concat dimension slice
        slices[dim] = slice(index, index + t.shape[dim])

        output[slices] = t
        index += t.shape[dim]

    return output

def count_parameters_by_module(model):
    # dictionary for parameters number by modules
    module_params = defaultdict(lambda: {"total": 0, "trainable": 0})
    
    # all params
    total_params = 0
    total_trainable_params = 0
    
    # Check Embedding Token masks
    embedding_masks = {}
    for name, param in model.named_parameters():
        if 'embed_tokens.weight' in name and hasattr(param, '_backward_hooks') and param._backward_hooks:
            # check if params has embedding_grad_mask_hook
            for hook_id, hook_fn in param._backward_hooks.items():
                if hook_fn.__code__.co_name == 'embedding_grad_mask_hook':
                    # Accessing mask variables in the closure of hook functions
                    for cell in hook_fn.__closure__ or []:
                        if isinstance(cell.cell_contents, torch.Tensor) and cell.cell_contents.dtype == torch.bool:
                            # check mask tensor
                            embedding_masks[name] = ~cell.cell_contents  # True : Trainable
                 
    # Count params by modules
    for name, param in model.named_parameters():
        # extracts top module_name
        module_name = name.split('.')[0]
        param_count = param.numel()
        
        module_params[module_name]["total"] += param_count
        total_params += param_count
        
        if param.requires_grad:
            # Only count for real trainable params. (with masks)
            if name in embedding_masks:
                trainable_count = embedding_masks[name].sum().item()
                module_params[module_name]["trainable"] += trainable_count
                total_trainable_params += trainable_count
            else:
                module_params[module_name]["trainable"] += param_count
                total_trainable_params += param_count
    
    print(f"All Params: {total_params:,}")
    print(f"Trainable Params: {total_trainable_params:,} ({total_trainable_params/total_params*100:.2f}%)")
    print("\nParams by Module:")
    
    for module_name, counts in sorted(module_params.items()):
        trainable_percentage = counts["trainable"] / counts["total"] * 100 if counts["total"] > 0 else 0
        total_percentage = counts["total"] / total_params * 100
        
        print(f"- {module_name}:")
        print(f"  Total: {counts['total']:,} ({total_percentage:.2f}% of model)")
        print(f"  Trainable: {counts['trainable']:,} ({trainable_percentage:.2f}% of module)")
    
    return module_params

def create_model(model_name_or_path, revision="main", use_flash_attention = False):
    model = AutoModel.from_pretrained(
        model_name_or_path,
        revision=revision,
        torch_dtype=torch.bfloat16,
        device_map="auto",
        attn_implementation="flash_attention_2" if use_flash_attention else "eager",
        trust_remote_code=True,
    )
    
    # Set use_cache to False after model loaded
    model.config.use_cache = False

    # Freeze all parameters
    for param in model.parameters():
        param.requires_grad = False
    
    model.set_lora_adapter('speech')
    model.to(torch.bfloat16)
    
    # (Optional) unfreeze audio_tower parameters
    #for param in model.audio_tower.parameters():
    #    param.requires_grad = True

    # Only unfreeze audio_projector parameters
    for param in model.audio_projector.parameters():
        param.requires_grad = True

    # (Optional) unfreeze audio embed_tokens
    train_embed = True
    if train_embed:
        embed_tokens = model.language_model.model.model.embed_tokens
        
        embed_tokens.weight.requires_grad = False

        # Added Speech token IDs (only this tokens be trainable)
        trainable_token_ids = [256001, 256002]

        embed_tokens.weight.requires_grad = True
        mask = torch.ones_like(embed_tokens.weight, dtype=torch.bool)
        mask[trainable_token_ids] = False  # Trainable Tokens are False (unfreeze), else True (freeze)

        # backward hook, with gradient masking
        def embedding_grad_mask_hook(grad):
            return grad.masked_fill(mask, 0)

        embed_tokens.weight.register_hook(embedding_grad_mask_hook)

        model.language_model.model.model.embed_tokens = embed_tokens
        
    count_parameters_by_module(model)

    return model

os.environ["TOKENIZERS_PARALLELISM"] = "false" 

INSTRUCTION = {
    "ast": [
        "Translate the audio to {0}.",
        "Translate the audio clip into {0}.",
        "Based on the attached audio, generate a comprehensive {0} translation of the spoken content.",
        "Translate the provided audio file into {0}.",
        "Convert the audio speech to {0} text.",
        "Write an {0} translation of the audio file.",
        "Translate spoken words from the audio into {0}.",
        "Create an {0} version of the audio content.",
        "Produce an accurate {0} translation of the audio.",
        "Extract speech from the audio and translate it to {0}.",
        "Turn the audio into readable {0} text.",
        "Write all spoken content from the audio in {0}.",
        "Generate an {0} translation of the speech in the file.",
        "Convert the recording into {0} text.",
        "Accurately translate the audio recording to {0}.",
        "Write down dialogue from the given audio in {0}.",
        "Translate all speech in this audio file to {0}.",
        "Create an accurate {0} version of the speech.",
        "Perform a complete {0} translation of the audio."
    ],
    "asr": [
        "Transcribe the audio clip into text.",
        "Based on the attached audio, generate a comprehensive text transcription of the spoken content.",
        "Transcribe the provided audio file into text.",
        "Convert the audio speech to text.",
        "Write a transcript of the audio file.",
        "Transcribe spoken words from the audio.",
        "Create a text version of the audio content.",
        "Produce a verbatim transcript of the audio.",
        "Extract and transcribe speech from the audio.",
        "Turn the audio into readable text.",
        "Write all spoken words from the audio.",
        "Generate a transcript of the speech in the file.",
        "Convert the recording into a text transcript.",
        "Accurately transcribe the audio recording.",
        "Write down dialogue from the given audio.",
        "Transcribe all speech in this audio file.",
        "Create an accurate text version of the speech.",
        "Perform a complete transcription of the audio."
    ],
}

ANSWER_SUFFIX = "<end_of_turn>"
_IGNORE_INDEX = -100

model_name_or_path = 'junnei/gemma-3-4b-it-speech'
use_flash_attention = True

output_dir = '/workspace/output'
batch_size = 128
batch_size_per_gpu = 32
learning_rate = 4.0e-5 # 1.0e-4 for fine-tuning
wd = 0.01
num_train_epochs = 5

revision = "main" #"v1.0"

processor = AutoProcessor.from_pretrained(
    model_name_or_path,
    revision=revision,
    trust_remote_code=True,
)

model = create_model(
    model_name_or_path,
    revision=revision,
    use_flash_attention=use_flash_attention,
)

train_datasets = []

# Covost ASR mode (English -> English text)
covost_asr_dataset = CoVoSTDataset(
    processor=processor,
    data_dir="/workspace/CommonVoice/EN",
    split="train",
    ast=False,
    lang=("en_ko", "Korean")
)
train_datasets.append(covost_asr_dataset)

# Covost AST mode (English -> Korean text)
covost_dataset = CoVoSTDataset(
    processor=processor,
    data_dir="/workspace/CommonVoice/EN",
    split="train",
    ast=True,
    lang=("en_ko", "Korean")
)
train_datasets.append(covost_dataset)

# Libri Speech Clean ASR mode (English -> English text)
libri_speech_clean = LibriSpeechDataset(
    processor=processor,
    subset="clean",
    split="train.360"
)
train_datasets.append(libri_speech_clean)

# Libri Speech Other ASR mode (English -> English text)
libri_speech_other = LibriSpeechDataset(
    processor=processor,
    subset="other",
    split="train.500"
)
train_datasets.append(libri_speech_other)

# Fleurs ASR mode (English -> English text)
en_asr_fleurs = FleursDataset(
    processor=processor,
    split="train",
    source_lang="en_us",  # English
    mode="asr"
)
train_datasets.append(en_asr_fleurs)

# Fleurs AST mode (English -> Korean text)
en_ko_ast_fleurs = FleursDataset(
    processor=processor,
    split="train",
    source_lang="en_us",  # English
    target_lang="ko_kr",  # Korean
    mode="ast"
)
train_datasets.append(en_ko_ast_fleurs)

# Covost ASR mode (Korean -> Korean text)
covost_ko_asr_dataset = CoVoSTDataset(
    processor=processor,
    data_dir="/workspace/CommonVoice/ko",
    split="train",
    ast=False,
    lang=("ko_en", "English")
)
train_datasets.append(covost_ko_asr_dataset)

# Covost AST mode (Korean -> English text)
covost_ko_dataset = CoVoSTDataset(
    processor=processor,
    data_dir="/workspace/CommonVoice/ko",
    split="train",
    ast=True,
    lang=("ko_en", "English")
)
train_datasets.append(covost_ko_dataset)

# Zeroth ASR mode (Korean -> Korean text)
ko_asr_zeroth = ZerothKoreanDataset(
    processor=processor,
    split="train"
)
train_datasets.append(ko_asr_zeroth)

# Fleurs ASR mode (Korean -> Korean text)
ko_asr_fleurs = FleursDataset(
    processor=processor,
    split="train",
    source_lang="ko_kr",  # Korean
    mode="asr"
)
train_datasets.append(ko_asr_fleurs)

# Fleurs AST mode (Korean -> English text)
ko_en_ast_fleurs = FleursDataset(
    processor=processor,
    split="train",
    source_lang="ko_kr",  # Korean
    target_lang="en_us",  # English
    mode="ast"
)
train_datasets.append(ko_en_ast_fleurs)

print("Count Num of Datasets", len(train_datasets))
print([len(dataset) for dataset in train_datasets])

# ConcatDataset
train_dataset = ConcatDataset(train_datasets) if len(train_datasets) > 1 else train_datasets[0]
print("Count Length of Datas", len(train_dataset))

# Check GPUs
num_gpus = torch.cuda.device_count()
print(f'training on {num_gpus} GPUs')

assert (
    batch_size % (num_gpus * batch_size_per_gpu) == 0
), 'Batch size must be divisible by the number of GPUs'
gradient_accumulation_steps = batch_size // (num_gpus * batch_size_per_gpu)

# hard coded training args
training_args = TrainingArguments(
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=batch_size_per_gpu,
    gradient_checkpointing=True,
    gradient_checkpointing_kwargs={'use_reentrant': False},
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim='adamw_torch',
    adam_beta1=0.9,
    adam_beta2=0.95,
    adam_epsilon=1e-7,
    learning_rate=learning_rate,
    weight_decay=wd,
    max_grad_norm=1.0,
    lr_scheduler_type='cosine',
    warmup_steps=50,
    logging_steps=50,
    output_dir=output_dir,
    save_strategy='no',
    save_total_limit=10,
    save_only_model=True,
    bf16=True,
    fp16=False,
    remove_unused_columns=False,
    report_to='none',
    deepspeed=None,
    disable_tqdm=False,
    dataloader_num_workers=4,
    ddp_find_unused_parameters=True,
)

out_path = Path(training_args.output_dir)
out_path.mkdir(parents=True, exist_ok=True)

# create optimizer only for trainable params
optimizer = torch.optim.AdamW(
    filter(lambda p: p.requires_grad, model.parameters()),
    lr=learning_rate,
    weight_decay=wd,
    betas=(0.9, 0.95),
    eps=1e-7,
)

# Trainer Setting
trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=covost_collate_fn,
    train_dataset=train_dataset,
    optimizers=(optimizer, None),
)

trainer.train()

import shutil

# 1. Save LoRA Adapter
model.language_model.model.save_pretrained(output_dir)

# 1-1. Delete Markdown file
markdown_file = os.path.join(output_dir, "README.md")
if os.path.exists(markdown_file):
    os.remove(markdown_file)

# 2. Save entire model
model.save_pretrained(output_dir)

# 3. Cleanup Memory
del model
del trainer
__import__('gc').collect()
torch.cuda.empty_cache()

from huggingface_hub import HfApi, login, create_repo, Repository, upload_folder

upload_dir = "/workspace/upload"

# 4. Clone Repo
repo_id = "junnei/gemma-3-4b-it-speech"
branch_name = "main"  # 새 브랜치 이름

repo = Repository(local_dir=upload_dir, clone_from = repo_id)
repo.git_checkout(branch_name, create_branch_ok=True)

# 4-1. Move Trained model to Repo
for item in os.listdir(output_dir):
    s = os.path.join(output_dir, item)
    d = os.path.join(upload_dir, item)
    if os.path.isdir(s):
        shutil.copytree(s, d, dirs_exist_ok=True)
    else:
        shutil.copy2(s, d)