File size: 25,155 Bytes
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
 
b91ae85
 
800f55d
 
 
 
 
b91ae85
 
 
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
b91ae85
800f55d
b91ae85
800f55d
b91ae85
 
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
 
800f55d
 
 
 
 
 
 
 
b91ae85
 
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
b91ae85
800f55d
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
 
 
 
b91ae85
 
 
 
 
 
 
 
 
 
800f55d
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
800f55d
b91ae85
 
 
 
 
 
 
800f55d
b91ae85
 
 
 
 
800f55d
b91ae85
 
 
 
800f55d
b91ae85
 
 
 
800f55d
b91ae85
 
 
 
 
 
800f55d
b91ae85
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
b91ae85
 
800f55d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b91ae85
800f55d
 
 
 
 
 
 
 
b91ae85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
from io import BytesIO
from urllib.request import urlopen
import soundfile
import torch
from datasets import load_dataset, Audio
import numpy as np
from transformers import AutoModel, AutoProcessor, BatchFeature
from tqdm import tqdm
import json
import os
import time
from datetime import datetime
from whisper_normalizer.english import EnglishTextNormalizer
from whisper_normalizer.basic import BasicTextNormalizer
import sacrebleu
from jiwer import cer, wer
from torch.utils.data import Dataset, DataLoader
import soundfile as sf
import re

normalizer = {
    "en_us" : EnglishTextNormalizer(),
    "ko_kr" : BasicTextNormalizer()
}

# λͺ¨λΈ 및 ν”„λ‘œμ„Έμ„œ λ‘œλ“œ
model_id = "junnei/gemma-3-4b-it-speech"
revision = "main" #"v1.0"

model = AutoModel.from_pretrained(
    model_id, device_map="auto", revision = revision, trust_remote_code=True
).eval()

processor = AutoProcessor.from_pretrained(
    model_id, revision = revision, trust_remote_code=True
)

# κ²°κ³Ό μ €μž₯ 디렉토리 생성
results_dir = f"evaluation_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
os.makedirs(results_dir, exist_ok=True)


INSTRUCTION = {
    "ast": "Translate the audio to {0}.",
    "asr": "Transcribe the audio clip into text.",
}

class BaseAudioDataset(Dataset):
    def __init__(self, processor, split, sampling_rate=16000, debug=False):
        self.processor = processor
        self.training = "train" in split
        self.debug = debug
        self.sampling_rate = sampling_rate
        self.name = ""

    def set_dataset_name(self, name):
        self.name = name

    @staticmethod
    def filter_corrupted_files(data, audio_field, text_fields, dataset_name, sampling_rate=16000, debug=True):
        original_size = len(data)
        
        data = data.cast_column(audio_field, Audio(decode=False))
        
        def identify_corrupted_files(example):
            try:
                sf.read(example[audio_field]["path"])
                
                for field in text_fields:
                    if example[field].replace('"', '') == "":
                        return False
                return True
            except Exception:
                return False
        
        data = data.filter(identify_corrupted_files, num_proc=16)
        validated_size = len(data)
        
        # μ˜€λ””μ˜€ λ””μ½”λ”©
        data = data.cast_column(audio_field, Audio(sampling_rate=sampling_rate, decode=True))
        
        if debug:
            print(f"데이터셋: {dataset_name}")
            print(f"원본 데이터 개수: {original_size}")
            print(f"필터링 ν›„ 데이터 개수: {validated_size}")
            print(f"필터링 λΉ„μœ¨: {validated_size/original_size:.2%}")
            
        return data

    @staticmethod
    def filter_by_audio_length(data, audio_field, min_sec=2, max_sec=20, debug=True):
        original_size = len(data)
        
        def filter_audio_by_length(example):
            try:
                audio = example[audio_field]['array']
                channel = 1
                if hasattr(audio, 'ndim') and audio.ndim > 1:
                    channel = audio.ndim
                    audio = audio.squeeze()
                audio_length = len(audio) / example[audio_field]['sampling_rate'] / channel
                return min_sec <= audio_length <= max_sec
            except Exception as e:
                if debug:
                    print(f"였λ₯˜ λ°œμƒ: {str(e)[:100]}... - μƒ˜ν”Œ μ œμ™Έλ¨")
                return False
        
        data = data.filter(filter_audio_by_length, num_proc=16)
        filtered_size = len(data)
        
        if debug:
            print(f"길이 필터링 μ „ 데이터 개수: {original_size}")
            print(f"길이 필터링 ν›„ 데이터 개수: {filtered_size}")
            print(f"필터링 λΉ„μœ¨: {filtered_size/original_size:.2%}")
            
        return data

    def prepare_model_inputs(self, audio_array, instruction, answer_text):
        user_message = {
            'role': 'user',
            'content': '<start_of_audio>' + instruction,
        }
        prompt = self.processor.tokenizer.apply_chat_template(
            [user_message], tokenize=False, add_generation_prompt=True, add_bos=True
        )
        
        inputs = self.processor(
            text=prompt, 
            audio=[audio_array], 
            add_special_tokens=False, 
            return_tensors='pt'
        )
        
        input_ids = inputs.input_ids
        token_type_ids = inputs.token_type_ids
        
        return {
            'input_ids': input_ids,
            'token_type_ids': token_type_ids,
            'input_audio_embeds': inputs.input_audio_embeds,
            'audio_embed_sizes': inputs.audio_embed_sizes,
            'input_modes': inputs.input_modes,
            'answer': answer_text,
        }

# CoVoST2 Dataset Class
class CoVoSTDataset(BaseAudioDataset):
    def __init__(self, processor, data_dir, split, ast=False,
                 lang=("en_ko", "Korean"), sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)

        self.set_dataset_name("CoVoST")
        
        self.ast = ast
        self.lang = lang[0]
        
        self.data = load_dataset("junnei/covost2", 
                           lang[0],
                           data_dir=data_dir, 
                           split=split,
                           trust_remote_code=True
                           )

        text_fields = ["sentence", "translation"] if ast else ["sentence"]
        self.data = self.filter_corrupted_files(self.data, "audio", text_fields, "CoVoST")
        
        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")

        # Instruction Setting
        self.instruction = INSTRUCTION["ast"].format(lang[1]) if ast else INSTRUCTION["asr"]
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        
        if self.ast:
            answer_text = data["translation"]
        else:
            answer_text = data["sentence"].replace('"', '')
        
        return self.prepare_model_inputs(
            data["audio"]["array"],
            self.instruction,
            answer_text
        )


# Libri Speech Dataset Class
class LibriSpeechDataset(BaseAudioDataset):
    def __init__(self, processor, subset, split, sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)

        self.set_dataset_name(f"LibriSpeech_{subset}")
        
        # only ASR
        self.ast = False
        self.lang = "en"
        
        if split == "train":
            split = "train.360"

        # load dataset
        self.data = load_dataset("fixie-ai/librispeech_asr",
                            subset,
                            split=split,
                            trust_remote_code=True
                            )
        
        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")
            
        # Instruction Setting
        self.instruction = INSTRUCTION["asr"]
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        
        # Libri Speech is only for ASR
        answer_text = data["text"].replace('"', '')
        
        return self.prepare_model_inputs(
            data["audio"]["array"],
            self.instruction,
            answer_text
        )

# Fleurs Dataset Class
class FleursDataset(BaseAudioDataset):
    def __init__(self, processor, split, source_lang, target_lang=None, 
                 mode="asr", sampling_rate=16000, debug=False):
        super().__init__(processor, split, sampling_rate, debug)

        self.set_dataset_name("Fleurs")

        # Mode Setting (ASR or AST)
        if mode not in ["asr", "ast"]:
            raise ValueError("mode must be 'asr' or 'ast'.")
        
        self.mode = mode
        self.ast = (mode == "ast")
        self.source_lang = source_lang
        
        # Language name mapping (expand if needed)
        self.lang_names = {
            'en_us': 'English', 'ko_kr': 'Korean'
        }
        
        # load dataset - source language dataset
        self.data = load_dataset("google/fleurs",
                            source_lang,
                            split=split,
                            trust_remote_code=True
                            )

        # (Optional) Audio length Filtering
        self.data = self.filter_by_audio_length(self.data, "audio")
        
        # When AST mode, load target language dataset.
        if self.ast:
            if target_lang is None:
                raise ValueError("AST mode requires target_lang.")
                
            self.target_lang = target_lang
            self.lang = f"{source_lang}_{target_lang}"
            
            # load dataset - target language dataset (for translation)
            target_data = load_dataset("google/fleurs",
                                target_lang,
                                split=split,
                                trust_remote_code=True
                                )
            
            source_dict = {item['id']: item for item in self.data}
            target_dict = {item['id']: item for item in target_data}
            
            # only Common ID, add translation fields
            common_ids = set(source_dict.keys()) & set(target_dict.keys())
            print(f"FLEURS AST Common data filtering: {len(self.data)} -> {len(common_ids)}")
            self.data = [
                {**source_dict[id], 'translation': target_dict[id]['transcription']}
                for id in common_ids
            ]

            # Instruction Setting - use target language name
            target_lang_name = self.lang_names.get(target_lang, target_lang.capitalize())
            self.instruction = INSTRUCTION["ast"].format(target_lang_name)
        else:
            # ASR mode
            self.lang = source_lang
            self.instruction = INSTRUCTION["asr"]

        if self.debug:
            print(f"FLEURS dataset loaded: {self.mode.upper()} mode")
            print(f"source lang: {source_lang} ({self.lang_names.get(source_lang, source_lang)})")
            if self.ast:
                print(f"target lang: {target_lang} ({self.lang_names.get(target_lang, target_lang)})")
            print(f"dataset size: {len(self.data)}")
    
    def __len__(self):
        return len(self.data)
    
    def __getitem__(self, idx):
        data = self.data[idx]
        audio_array = data["audio"]["array"]

        if self.ast:
            answer_text = data["translation"]
        else:
            answer_text = data["transcription"]
        
        return self.prepare_model_inputs(
            audio_array,
            self.instruction,
            answer_text
        )

def pad_sequence(sequences, padding_side='left', padding_value=0):
    """
    Pad a list of sequences to the same length.
    sequences: list of tensors in [seq_len, *] shape
    """
    assert padding_side in ['right', 'left']
    max_size = sequences[0].size()
    trailing_dims = max_size[1:]
    max_len = max(len(seq) for seq in sequences)
    batch_size = len(sequences)
    output = sequences[0].new_full((batch_size, max_len) + trailing_dims, padding_value)
    for i, seq in enumerate(sequences):
        length = seq.size(0)
        if padding_side == 'right':
            output.data[i, :length] = seq
        else:
            output.data[i, -length:] = seq
    return output

def cat_with_pad(tensors, dim, padding_value=0):
    """
    cat along dim, while pad to max for all other dims
    """
    ndim = tensors[0].dim()
    assert all(
        t.dim() == ndim for t in tensors[1:]
    ), 'All tensors must have the same number of dimensions'

    out_size = [max(t.shape[i] for t in tensors) for i in range(ndim)]
    out_size[dim] = sum(t.shape[dim] for t in tensors)
    output = tensors[0].new_full(out_size, padding_value)

    index = 0
    for t in tensors:
        # Create a slice list where every dimension except dim is full slice
        slices = [slice(0, t.shape[d]) for d in range(ndim)]
        # Update only the concat dimension slice
        slices[dim] = slice(index, index + t.shape[dim])

        output[slices] = t
        index += t.shape[dim]

    return output

def covost_collate_fn(batch):
    input_ids_list = []
    input_audio_embeds_list = []
    audio_embed_sizes_list = []
    audio_attention_mask_list = []
    input_modes_list = []
    answer_list = []
    for inputs in batch:
        input_ids_list.append(inputs['input_ids'][0])
        input_audio_embeds_list.append(inputs['input_audio_embeds'])
        audio_embed_sizes_list.append(inputs['audio_embed_sizes'])
        audio_attention_mask_list.append(
            inputs['input_audio_embeds'].new_full((inputs['input_audio_embeds'].size(1),), True, dtype=torch.bool)
        )
        input_modes_list.append(inputs['input_modes'])
        answer_list.append(inputs['answer'])

    try:
        input_ids = pad_sequence(input_ids_list, padding_side='left', padding_value=0)
        audio_attention_mask = (
            pad_sequence(audio_attention_mask_list, padding_side='right', padding_value=False)
            if len(audio_attention_mask_list) > 1
            else None
        )
    except Exception as e:
        print(e)
        print(input_ids_list)
        print(audio_attention_mask)
        raise
    attention_mask = (input_ids != 0).long()
    input_audio_embeds = cat_with_pad(input_audio_embeds_list, dim=0)
    audio_embed_sizes = torch.cat(audio_embed_sizes_list)
    input_modes = torch.cat(input_modes_list)

    return BatchFeature(
        {
            'input_ids': input_ids,
            'attention_mask': attention_mask,
            'input_audio_embeds': input_audio_embeds,
            'audio_embed_sizes': audio_embed_sizes,
            'audio_attention_mask': audio_attention_mask,
            'input_modes': input_modes,
            'answer': answer_list,
        }
    )

def save_results(results, dataset_name, task, source_lang, target_lang=None, sample_idx=None):
    """κ²°κ³Όλ₯Ό JSON 파일둜 μ €μž₯"""
    filename = f"{task}_{dataset_name}_{source_lang}"
    if target_lang:
        filename += f"_to_{target_lang}"
    if sample_idx is not None:
        filename += f"_sample_{sample_idx}"
    
    filepath = os.path.join(results_dir, f"{filename}.json")
    
    # 결과에 νƒ€μž„μŠ€νƒ¬ν”„ μΆ”κ°€
    results["timestamp"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    with open(filepath, 'w', encoding='utf-8') as f:
        json.dump(results, f, ensure_ascii=False, indent=2)
    
    print(f"κ²°κ³Όκ°€ {filepath}에 μ €μž₯λ˜μ—ˆμŠ΅λ‹ˆλ‹€.")
    return filepath

def evaluate_task(dataset, source_lang, target_lang, num_samples=-1, batch_size = 32, is_asr=True):
    """ASR(μžλ™ μŒμ„± 인식) μ„±λŠ₯ 평가"""
    task_type = "asr" if is_asr else "translation"
    eval_lang = source_lang if is_asr else target_lang
    eval_normalizer = normalizer[eval_lang]
    sample_results = []
    
    # μƒ˜ν”Œ 수 처리
    if num_samples > 0 and num_samples < len(dataset):
        indices = np.random.choice(len(dataset), num_samples, replace=False)
        dataset = dataset.select(indices)
    
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False, collate_fn=covost_collate_fn)
        
    evaluated_samples = {} 
    
    # 배치 λ‹¨μœ„λ‘œ 처리
    for batch_idx, batch in enumerate(tqdm(dataloader)):
        batch_references = batch.pop("answer")

        # GPU둜 이동
        if torch.cuda.is_available():
            batch = {k: v.to("cuda") for k, v in batch.items()}
        
        # 배치 μΆ”λ‘ 
        with torch.inference_mode():
            generate_ids = model.generate(**batch, 
            max_new_tokens=256,
            #temperature = 1.0, top_p = 0.95, top_k = 64, do_sample=True
            )
            
            input_lengths = batch['input_ids'].shape[1]
            generate_ids = generate_ids[:, input_lengths:]
        
            # λ””μ½”λ”©
            batch_predictions = processor.batch_decode(
                generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
            )
        
        # κ²°κ³Ό μ €μž₯
        for i, (reference, prediction) in enumerate(zip(batch_references, batch_predictions)):
            idx = batch_idx * batch_size + i
            sample_result = {
                "id": idx,
                "reference": reference,
                "prediction": prediction
            }
            sample_results.append(sample_result)

        # 10λ°°μΉ˜λ§ˆλ‹€ 쀑간 κ²°κ³Ό μ €μž₯
        if (batch_idx + 1) % 10 == 0:
            temp_results = []
            
            # λͺ¨λ“  μƒ˜ν”Œμ— λŒ€ν•΄ 처리
            for item in sample_results:
                sample_id = item["id"]
                
                # 이미 ν‰κ°€λœ μƒ˜ν”Œμ€ 평가 κ²°κ³Όλ₯Ό μž¬μ‚¬μš©
                if sample_id in evaluated_samples:
                    temp_item = item.copy()
                    temp_item.update(evaluated_samples[sample_id])
                    temp_results.append(temp_item)
                else:
                    # 아직 ν‰κ°€λ˜μ§€ μ•Šμ€ μƒ˜ν”Œμ€ μƒˆλ‘œ 평가
                    temp_item = item.copy()
                    try:
                        ref = eval_normalizer(item["reference"])
                        pred = eval_normalizer(item["prediction"])

                        # BLEU, WER/CER 계산
                        utt_bleu = sacrebleu.sentence_bleu(pred, [ref]).score
                        utt_cer = round(cer(re.sub(r"\s+", "", ref), re.sub(r"\s+", "", pred)) * 100, 2)
                        utt_wer = round(wer(ref, pred) * 100, 2)

                        metrics = {
                            "bleu": utt_bleu,
                            "cer": utt_cer,
                            "wer": utt_wer
                        }
                        
                        # 평가 κ²°κ³Ό μ €μž₯
                        evaluated_samples[sample_id] = metrics
                        temp_item.update(metrics)
                    except Exception as e:
                        print(f"Error evaluating sample {sample_id}: {e}")
                        # 였λ₯˜ λ°œμƒ μ‹œ κΈ°λ³Έκ°’ μ„€μ •
                        metrics = {
                            "bleu": 0,
                            "cer": 100,
                            "wer": 100,
                            "error": str(e)
                        }
                        evaluated_samples[sample_id] = metrics
                        temp_item.update(metrics)
                
                    temp_results.append(temp_item)

            partial_results = {
                "task": task_type,
                "source_lang": source_lang,
                "target_lang": target_lang,
                "num_samples": len(temp_results),
                "sample_results": temp_results
            }
            save_results(partial_results, dataset.name, task_type, source_lang, target_lang)

    for item in sample_results:
        ref = eval_normalizer(item["reference"])
        pred = eval_normalizer(item["prediction"])

        # BLEU, WER/CER 계산
        utt_bleu = sacrebleu.sentence_bleu(pred, [ref]).score
        utt_cer = round(cer(re.sub(r"\s+", "", ref), re.sub(r"\s+", "", pred)) * 100, 2)
        utt_wer = round(wer(ref, pred) * 100, 2)

        item.update({
            "bleu": utt_bleu,
            "cer": utt_cer,
            "wer": utt_wer
        })

    avg_bleu = sum(item["bleu"] for item in sample_results) / len(sample_results)
    avg_cer = sum(item["cer"] for item in sample_results) / len(sample_results)
    avg_wer = sum(item["wer"] for item in sample_results) / len(sample_results)
    
    results = {
        "dataset": dataset.name,
        "task": task_type,
        "source_lang": source_lang,
        "target_lang": target_lang,
        "num_samples": len(sample_results),
        "metrics": {
            "bleu": avg_bleu,
            "cer": avg_cer,
            "wer": avg_wer
        },
        "sample_results": sample_results
    }
    
    # μ΅œμ’… κ²°κ³Ό μ €μž₯
    save_results(results, dataset.name, task_type, source_lang, target_lang)
    return results

# 메인 μ‹€ν–‰ μ½”λ“œ
if __name__ == "__main__":
    # 평가할 μ–Έμ–΄ λͺ©λ‘ (μ†ŒμŠ€ μ–Έμ–΄)
    source_languages = [
        #("ko_kr", "Korean"),
        ("en_us", "English"), # μ˜μ–΄ (λ―Έκ΅­)
    ]
    
    # λ²ˆμ—­ λŒ€μƒ μ–Έμ–΄ λͺ©λ‘ (μ½”λ“œ, 이름)
    target_languages = [
        #("en_us", "English"),
        ("ko_kr", "Korean"),
    ]

    data_dir = {
        #"ko_kr" : "/workspace/CommonVoice/ko",
        "en_us" : "/workspace/CommonVoice/EN",
    }
    
    # μƒ˜ν”Œ 수 μ„€μ • (-1은 전체 데이터셋 μ‚¬μš©)
    num_samples = -1
    batch_size = 32

    # λͺ¨λ“  μ†ŒμŠ€ 언어에 λŒ€ν•΄ ASR 평가
    for source_lang, target_lang in zip(source_languages, target_languages):
        print(f"\n===== {source_lang[0]} ASR 평가 μ‹œμž‘ =====")
        
        # 데이터셋 λ‘œλ“œ
        split = "test"

        datasets = []

        # Covost ASR mode (English -> English text)
        covost = CoVoSTDataset(
            processor=processor,
            data_dir="/workspace/CommonVoice/EN",
            split=split,
            ast=False,
            lang=("en_ko", "Korean")
        )
        datasets.append(covost)

        # Libri Speech Clean ASR mode (English -> English text)
        libri_speech_clean = LibriSpeechDataset(
            processor=processor,
            subset="clean",
            split=split
        )
        datasets.append(libri_speech_clean)

        # Libri Speech Other ASR mode (English -> English text)
        libri_speech_other = LibriSpeechDataset(
            processor=processor,
            subset="other",
            split=split
        )
        datasets.append(libri_speech_other)

        # Fleurs ASR mode (English -> English text)
        fleurs = FleursDataset(
            processor=processor,
            split=split,
            source_lang="en_us",  # English
            mode="asr"
        )
        datasets.append(fleurs)

        for dataset in datasets:
            # ASR 평가
            asr_results = evaluate_task(dataset, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = True)
            
            print(f"\n=== {asr_results.get('dataset', 'Dataset')} | {source_lang[0]} ASR κ²°κ³Ό ===")
            print(f"BLEU: {asr_results.get('metrics', {}).get('bleu', 'N/A')}")
            print(f"WER: {asr_results.get('metrics', {}).get('wer', 'N/A')}")
            print(f"CER: {asr_results.get('metrics', {}).get('cer', 'N/A')}")
                
        try:
            print(f"\n===== {source_lang[0]} -> {target_lang[0]} λ²ˆμ—­ 평가 μ‹œμž‘ =====")
                
            datasets = []

            # Covost AST mode (English -> Korean text)
            covost = CoVoSTDataset(
                processor=processor,
                data_dir="/workspace/CommonVoice/EN",
                split=split,
                ast=True,
                lang=("en_ko", "Korean")
            )
            datasets.append(covost)

            # Fleurs AST mode (English -> Korean text)
            fleurs = FleursDataset(
                processor=processor,
                split=split,
                source_lang="en_us",  # English
                target_lang="ko_kr",  # Korean
                mode="ast"
            )
            datasets.append(fleurs)

            for dataset in datasets:
                # λ²ˆμ—­ 평가
                translation_results = evaluate_task(dataset, source_lang[0], target_lang[0], num_samples, batch_size=batch_size, is_asr = False)
                
                print(f"\n=== {translation_results.get('dataset', 'Dataset')} | {source_lang[0]} -> {target_lang[0]} λ²ˆμ—­ κ²°κ³Ό ===")
                print(f"BLEU: {translation_results.get('metrics', {}).get('bleu', 'N/A')}")
                print(f"WER: {translation_results.get('metrics', {}).get('wer', 'N/A')}")
                print(f"CER: {translation_results.get('metrics', {}).get('cer', 'N/A')}")
            
        except Exception as e:
            error_info = {
                "error": str(e),
                "source_lang": source_lang[0],
                "target_lang": target_lang[0],
                "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            }
            error_file = os.path.join(results_dir, f"error_translation_{source_lang[0]}_to_{target_lang[0]}_global.json")
            with open(error_file, 'w') as f:
                json.dump(error_info, f, indent=2)
            print(f"{source_lang[0]} -> {target_lang[0]} λ²ˆμ—­ 평가 쀑 였λ₯˜ λ°œμƒ: {str(e)}")
            continue
    
    print(f"\nλͺ¨λ“  평가가 μ™„λ£Œλ˜μ—ˆμŠ΅λ‹ˆλ‹€. κ²°κ³ΌλŠ” {results_dir} 디렉토리에 μ €μž₯λ˜μ—ˆμŠ΅λ‹ˆλ‹€.")