jimyoung6709 commited on
Commit
add2b2d
·
verified ·
1 Parent(s): 4d189be

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -113
README.md CHANGED
@@ -6,117 +6,6 @@ tags:
6
  - robotics
7
  - motion planning
8
  ---
9
- # Neural MP
10
 
11
- Neural MP is a machine learning-based motion planning system for robotic manipulation tasks. It combines neural networks trained on large-scale simulated data with lightweight optimization techniques to generate efficient, collision-free trajectories. Neural MP is designed to generalize across diverse environments and obstacle configurations, making it suitable for both simulated and real-world robotic applications. This repository contains the model weights for Neural MP.
12
-
13
- All Neural MP checkpoints, as well as our [codebase](https://github.com/mihdalal/neuralmotionplanner) are released under an MIT License.
14
-
15
- For full details, please read our [paper](https://mihdalal.github.io/neuralmotionplanner/resources/paper.pdf) and see [our project page](https://mihdalal.github.io/neuralmotionplanner/).
16
-
17
- ## Model Summary
18
- - **Developed by:** The Neural MP team consisting of researchers from Carnegie Mellon University.
19
- - **Language(s) (NLP):** en
20
- - **License:** MIT
21
- - **Pretraining Dataset:** Coming soon
22
- - **Repository:** [https://github.com/mihdalal/neuralmotionplanner](https://github.com/mihdalal/neuralmotionplanner)
23
- - **Paper:** Coming soon
24
- - **Project Page & Videos:** [https://mihdalal.github.io/neuralmotionplanner/](https://mihdalal.github.io/neuralmotionplanner/)
25
-
26
- ## Installation
27
-
28
- Please read [here](https://github.com/mihdalal/neural_mp?tab=readme-ov-file#installation-instructions) for detailed instructions
29
-
30
- ## Usage
31
-
32
- Neural MP model takes in 3D point cloud and start & goal angles of the Franka robot as input, and predict 7-DoF delta joint actions. We provide a wrapper class [NeuralMP](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/real_utils/neural_motion_planner.py) for inference and deploy our model in the real world.
33
-
34
- Here's an deployment example with the Manimo Franka control library:
35
-
36
- Note: using Manimo is not required, you may use other Franka control libraries by creating a wrapper class which inherits from FrankaRealEnv (see [franka_real_env.py](https://github.com/mihdalal/neural_mp/blob/master/neural_mp/envs/franka_real_env.py))
37
-
38
- ```python
39
- import argparse
40
- import numpy as np
41
- from neural_mp.envs.franka_real_env import FrankaRealEnvManimo
42
- from neural_mp.real_utils.neural_motion_planner import NeuralMP
43
- if __name__ == "__main__":
44
- parser = argparse.ArgumentParser()
45
- parser.add_argument(
46
- "--mdl_url",
47
- type=str,
48
- default="mihdalal/NeuralMP",
49
- help="hugging face url to load the neural_mp model",
50
- )
51
- parser.add_argument(
52
- "--cache-name",
53
- type=str,
54
- default="scene1_single_blcok",
55
- help="Specify the scene cache file with pcd and rgb data",
56
- )
57
- parser.add_argument(
58
- "--use-cache",
59
- action="store_true",
60
- help=("If set, will use pre-stored point clouds"),
61
- )
62
- parser.add_argument(
63
- "--debug-combined-pcd",
64
- action="store_true",
65
- help=("If set, will show visualization of the combined pcd"),
66
- )
67
- parser.add_argument(
68
- "--denoise-pcd",
69
- action="store_true",
70
- help=("If set, will apply denoising to the pcds"),
71
- )
72
- parser.add_argument(
73
- "--train-mode", action="store_true", help=("If set, will eval with policy in training mode")
74
- )
75
- parser.add_argument(
76
- "--tto", action="store_true", help=("If set, will apply test time optimization")
77
- )
78
- parser.add_argument(
79
- "--in-hand", action="store_true", help=("If set, will enable in hand mode for eval")
80
- )
81
- parser.add_argument(
82
- "--in-hand-params",
83
- nargs="+",
84
- type=float,
85
- default=[0.1, 0.1, 0.1, 0.0, 0.0, 0.1, 0.0, 0.0, 0.0, 1.0],
86
- help="Specify the bounding box of the in hand object. 10 params in total [size(xyz), pos(xyz), ori(xyzw)] 3+3+4.",
87
- )
88
- args = parser.parse_args()
89
- env = FrankaRealEnvManimo()
90
- neural_mp = NeuralMP(
91
- env=env,
92
- model_url=args.mdl_url,
93
- train_mode=args.train_mode,
94
- in_hand=args.in_hand,
95
- in_hand_params=args.in_hand_params,
96
- visualize=True,
97
- )
98
- points, colors = neural_mp.get_scene_pcd(
99
- use_cache=args.use_cache,
100
- cache_name=args.cache_name,
101
- debug_combined_pcd=args.debug_combined_pcd,
102
- denoise=args.denoise_pcd,
103
- )
104
- # specify start and goal configurations
105
- start_config = np.array([-0.538, 0.628, -0.061, -1.750, 0.126, 2.418, 1.610])
106
- goal_config = np.array([1.067, 0.847, -0.591, -1.627, 0.623, 2.295, 2.580])
107
- if args.tto:
108
- trajectory = neural_mp.motion_plan_with_tto(
109
- start_config=start_config,
110
- goal_config=goal_config,
111
- points=points,
112
- colors=colors,
113
- )
114
- else:
115
- trajectory = neural_mp.motion_plan(
116
- start_config=start_config,
117
- goal_config=goal_config,
118
- points=points,
119
- colors=colors,
120
- )
121
- success, joint_error = neural_mp.execute_motion_plan(trajectory, speed=0.2)
122
- ```
 
6
  - robotics
7
  - motion planning
8
  ---
9
+ # DRP
10
 
11
+ 5M ckpt at 7k epochs (7M steps)