See axolotl config
axolotl version: 0.8.0
# === Model Configuration ===
base_model: THUDM/GLM-4-32B-0414 # e.g. "mistralai/Mistral-Small-24B-Instruct-2501"
load_in_8bit: false
load_in_4bit: true
# === Training Setup ===
num_epochs: 2
micro_batch_size: 3
gradient_accumulation_steps: 2
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
# === Hyperparameter Configuration ===
optimizer: adamw_8bit
# Apollo-mini configuration:
#optim_args: "proj=random,rank=1,scale=128.0,scale_type=tensor,update_proj_gap=200"
# Regular Apollo configuration:
# optim_args:
#optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: rex
weight_decay: 0.01
warmup_ratio: 0.05
# === LoRA Configuration ===
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.25
lora_target_modules:
lora_target_linear: true
# === Data Configuration ===
datasets:
- path: allura-org/inkmix-v3.0
type: chat_template
split: train
field_messages: conversations
message_field_role: from
message_field_content: value
train_on_eos: all
dataset_prepared_path: last_run_prepared
chat_template: jinja
chat_template_jinja: |
[gMASK]<sop>{%- for msg in messages %}{%- if msg.role == 'system' %}<|system|>
{{ msg.content }}{%- elif msg.role == 'user' %}<|user|>
{{ msg.content }}{%- elif msg.role == 'assistant' %}<|assistant|>
{{ msg.content }}{%- endif %}{%- endfor %}{% if add_generation_prompt %}<|assistant|>{% else %}<|user|>{% endif %}
# === Plugins ===
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
# === Hardware Optimization ===
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: false
cut_cross_entropy: true
deepspeed: deepspeed_configs/zero3_bf16.json
# === Wandb Tracking ===
wandb_project: glm4-32b-inkmix-v3
# === Checkpointing ===
saves_per_epoch: 2
save_total_limit: 3
# === Advanced Settings ===
output_dir: /workspace/ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
logging_steps: 1
trust_remote_code: true
workspace/ckpts
This model is a fine-tuned version of THUDM/GLM-4-32B-0414 on the allura-org/inkmix-v3.0 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 48
- total_eval_batch_size: 24
- optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 31
- num_epochs: 2.0
Training results
Framework versions
- PEFT 0.15.1
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for allura-forge/remnant-glm4-32b-adpt
Base model
THUDM/GLM-4-32B-0414