|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa). |
|
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned |
|
using a masked language modeling (MLM) loss. |
|
""" |
|
|
|
import os |
|
import logging |
|
import argparse |
|
import math |
|
import numpy as np |
|
from tqdm import tqdm |
|
import multiprocessing |
|
import time |
|
|
|
import torch |
|
from torch.utils.tensorboard import SummaryWriter |
|
from torch.utils.data import DataLoader, SequentialSampler, RandomSampler |
|
from torch.utils.data.distributed import DistributedSampler |
|
from transformers import AdamW, get_linear_schedule_with_warmup |
|
from models import build_or_load_gen_model |
|
from evaluator import smooth_bleu |
|
from evaluator.CodeBLEU import calc_code_bleu |
|
from evaluator.bleu import _bleu |
|
from utils import get_filenames, get_elapse_time, load_and_cache_gen_data |
|
from configs import add_args, set_seed, set_dist |
|
|
|
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', |
|
datefmt='%m/%d/%Y %H:%M:%S', |
|
level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def eval_ppl_epoch(args, eval_data, eval_examples, model, tokenizer): |
|
eval_sampler = SequentialSampler(eval_data) |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size, |
|
num_workers=4, pin_memory=True) |
|
|
|
logger.info(" " + "***** Running ppl evaluation *****") |
|
logger.info(" Num examples = %d", len(eval_examples)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
|
|
model.eval() |
|
eval_loss, batch_num = 0, 0 |
|
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval ppl"): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
source_ids, target_ids = batch |
|
source_mask = source_ids.ne(tokenizer.pad_token_id) |
|
target_mask = target_ids.ne(tokenizer.pad_token_id) |
|
|
|
with torch.no_grad(): |
|
if args.model_type == 'roberta': |
|
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask, |
|
target_ids=target_ids, target_mask=target_mask) |
|
else: |
|
outputs = model(input_ids=source_ids, attention_mask=source_mask, |
|
labels=target_ids, decoder_attention_mask=target_mask) |
|
loss = outputs.loss |
|
|
|
eval_loss += loss.item() |
|
batch_num += 1 |
|
eval_loss = eval_loss / batch_num |
|
eval_ppl = round(np.exp(eval_loss), 5) |
|
return eval_ppl |
|
|
|
|
|
def eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, split_tag, criteria): |
|
logger.info(" ***** Running bleu evaluation on {} data*****".format(split_tag)) |
|
logger.info(" Num examples = %d", len(eval_examples)) |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
eval_sampler = SequentialSampler(eval_data) |
|
if args.data_num == -1: |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size, |
|
num_workers=4, pin_memory=True) |
|
else: |
|
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size) |
|
|
|
model.eval() |
|
pred_ids = [] |
|
bleu, codebleu = 0.0, 0.0 |
|
for batch in tqdm(eval_dataloader, total=len(eval_dataloader), desc="Eval bleu for {} set".format(split_tag)): |
|
source_ids = batch[0].to(args.device) |
|
source_mask = source_ids.ne(tokenizer.pad_token_id) |
|
with torch.no_grad(): |
|
if args.model_type == 'roberta': |
|
preds = model(source_ids=source_ids, source_mask=source_mask) |
|
|
|
top_preds = [pred[0].cpu().numpy() for pred in preds] |
|
else: |
|
preds = model.generate(source_ids, |
|
attention_mask=source_mask, |
|
use_cache=True, |
|
num_beams=args.beam_size, |
|
early_stopping=args.task == 'summarize', |
|
max_length=args.max_target_length) |
|
top_preds = list(preds.cpu().numpy()) |
|
pred_ids.extend(top_preds) |
|
|
|
pred_nls = [tokenizer.decode(id, skip_special_tokens=True, clean_up_tokenization_spaces=False) for id in pred_ids] |
|
|
|
output_fn = os.path.join(args.res_dir, "test_{}.output".format(criteria)) |
|
gold_fn = os.path.join(args.res_dir, "test_{}.gold".format(criteria)) |
|
src_fn = os.path.join(args.res_dir, "test_{}.src".format(criteria)) |
|
|
|
if args.task in ['defect']: |
|
target_dict = {0: 'false', 1: 'true'} |
|
golds = [target_dict[ex.target] for ex in eval_examples] |
|
eval_acc = np.mean([int(p == g) for p, g in zip(pred_nls, golds)]) |
|
result = {'em': eval_acc * 100, 'bleu': 0, 'codebleu': 0} |
|
|
|
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1, open(src_fn, 'w') as f2: |
|
for pred_nl, gold in zip(pred_nls, eval_examples): |
|
f.write(pred_nl.strip() + '\n') |
|
f1.write(target_dict[gold.target] + '\n') |
|
f2.write(gold.source.strip() + '\n') |
|
logger.info("Save the predictions into %s", output_fn) |
|
else: |
|
dev_accs, predictions = [], [] |
|
with open(output_fn, 'w') as f, open(gold_fn, 'w') as f1, open(src_fn, 'w') as f2: |
|
for pred_nl, gold in zip(pred_nls, eval_examples): |
|
dev_accs.append(pred_nl.strip() == gold.target.strip()) |
|
if args.task in ['summarize']: |
|
|
|
predictions.append(str(gold.idx) + '\t' + pred_nl) |
|
f.write(str(gold.idx) + '\t' + pred_nl.strip() + '\n') |
|
f1.write(str(gold.idx) + '\t' + gold.target.strip() + '\n') |
|
f2.write(str(gold.idx) + '\t' + gold.source.strip() + '\n') |
|
else: |
|
f.write(pred_nl.strip() + '\n') |
|
f1.write(gold.target.strip() + '\n') |
|
f2.write(gold.source.strip() + '\n') |
|
|
|
if args.task == 'summarize': |
|
(goldMap, predictionMap) = smooth_bleu.computeMaps(predictions, gold_fn) |
|
bleu = round(smooth_bleu.bleuFromMaps(goldMap, predictionMap)[0], 2) |
|
else: |
|
bleu = round(_bleu(gold_fn, output_fn), 2) |
|
if args.task in ['concode', 'translate', 'refine']: |
|
codebleu = calc_code_bleu.get_codebleu(gold_fn, output_fn, args.lang) |
|
|
|
result = {'em': np.mean(dev_accs) * 100, 'bleu': bleu} |
|
if args.task == 'concode': |
|
result['codebleu'] = codebleu * 100 |
|
|
|
logger.info("***** Eval results *****") |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(round(result[key], 4))) |
|
|
|
return result |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
args = add_args(parser) |
|
logger.info(args) |
|
t0 = time.time() |
|
|
|
set_dist(args) |
|
set_seed(args) |
|
config, model, tokenizer = build_or_load_gen_model(args) |
|
model.to(args.device) |
|
if args.n_gpu > 1: |
|
|
|
model = torch.nn.DataParallel(model) |
|
pool = multiprocessing.Pool(args.cpu_cont) |
|
args.train_filename, args.dev_filename, args.test_filename = get_filenames(args.data_dir, args.task, args.sub_task) |
|
fa = open(os.path.join(args.output_dir, 'summary.log'), 'a+') |
|
|
|
if args.do_train: |
|
if args.local_rank in [-1, 0] and args.data_num == -1: |
|
summary_fn = '{}/{}'.format(args.summary_dir, '/'.join(args.output_dir.split('/')[1:])) |
|
tb_writer = SummaryWriter(summary_fn) |
|
|
|
|
|
train_examples, train_data = load_and_cache_gen_data(args, args.train_filename, pool, tokenizer, 'train') |
|
train_sampler = RandomSampler(train_data) if args.local_rank == -1 else DistributedSampler(train_data) |
|
train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size, |
|
num_workers=4, pin_memory=True) |
|
|
|
|
|
no_decay = ['bias', 'LayerNorm.weight'] |
|
optimizer_grouped_parameters = [ |
|
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], |
|
'weight_decay': args.weight_decay}, |
|
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
] |
|
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) |
|
num_train_optimization_steps = args.num_train_epochs * len(train_dataloader) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, |
|
num_warmup_steps=args.warmup_steps, |
|
num_training_steps=num_train_optimization_steps) |
|
|
|
|
|
train_example_num = len(train_data) |
|
logger.info("***** Running training *****") |
|
logger.info(" Num examples = %d", train_example_num) |
|
logger.info(" Batch size = %d", args.train_batch_size) |
|
logger.info(" Batch num = %d", math.ceil(train_example_num / args.train_batch_size)) |
|
logger.info(" Num epoch = %d", args.num_train_epochs) |
|
|
|
dev_dataset = {} |
|
global_step, best_bleu_em, best_ppl = 0, -1, 1e6 |
|
not_loss_dec_cnt, not_bleu_em_inc_cnt = 0, 0 if args.do_eval_bleu else 1e6 |
|
|
|
for cur_epoch in range(args.start_epoch, int(args.num_train_epochs)): |
|
bar = tqdm(train_dataloader, total=len(train_dataloader), desc="Training") |
|
nb_tr_examples, nb_tr_steps, tr_loss = 0, 0, 0 |
|
model.train() |
|
for step, batch in enumerate(bar): |
|
batch = tuple(t.to(args.device) for t in batch) |
|
source_ids, target_ids = batch |
|
source_mask = source_ids.ne(tokenizer.pad_token_id) |
|
target_mask = target_ids.ne(tokenizer.pad_token_id) |
|
|
|
if args.model_type == 'roberta': |
|
loss, _, _ = model(source_ids=source_ids, source_mask=source_mask, |
|
target_ids=target_ids, target_mask=target_mask) |
|
else: |
|
outputs = model(input_ids=source_ids, attention_mask=source_mask, |
|
labels=target_ids, decoder_attention_mask=target_mask) |
|
loss = outputs.loss |
|
|
|
if args.n_gpu > 1: |
|
loss = loss.mean() |
|
if args.gradient_accumulation_steps > 1: |
|
loss = loss / args.gradient_accumulation_steps |
|
tr_loss += loss.item() |
|
|
|
nb_tr_examples += source_ids.size(0) |
|
nb_tr_steps += 1 |
|
loss.backward() |
|
|
|
if nb_tr_steps % args.gradient_accumulation_steps == 0: |
|
|
|
optimizer.step() |
|
optimizer.zero_grad() |
|
scheduler.step() |
|
global_step += 1 |
|
train_loss = round(tr_loss * args.gradient_accumulation_steps / (nb_tr_steps + 1), 4) |
|
bar.set_description("[{}] Train loss {}".format(cur_epoch, round(train_loss, 3))) |
|
|
|
if args.do_eval: |
|
|
|
if 'dev_loss' in dev_dataset: |
|
eval_examples, eval_data = dev_dataset['dev_loss'] |
|
else: |
|
eval_examples, eval_data = load_and_cache_gen_data(args, args.dev_filename, pool, tokenizer, 'dev') |
|
dev_dataset['dev_loss'] = eval_examples, eval_data |
|
|
|
eval_ppl = eval_ppl_epoch(args, eval_data, eval_examples, model, tokenizer) |
|
result = {'epoch': cur_epoch, 'global_step': global_step, 'eval_ppl': eval_ppl} |
|
for key in sorted(result.keys()): |
|
logger.info(" %s = %s", key, str(result[key])) |
|
logger.info(" " + "*" * 20) |
|
if args.data_num == -1: |
|
tb_writer.add_scalar('dev_ppl', eval_ppl, cur_epoch) |
|
|
|
|
|
if args.save_last_checkpoints: |
|
last_output_dir = os.path.join(args.output_dir, 'checkpoint-last') |
|
if not os.path.exists(last_output_dir): |
|
os.makedirs(last_output_dir) |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(last_output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
logger.info("Save the last model into %s", output_model_file) |
|
|
|
if eval_ppl < best_ppl: |
|
not_loss_dec_cnt = 0 |
|
logger.info(" Best ppl:%s", eval_ppl) |
|
logger.info(" " + "*" * 20) |
|
fa.write("[%d] Best ppl changed into %.4f\n" % (cur_epoch, eval_ppl)) |
|
best_ppl = eval_ppl |
|
|
|
|
|
output_dir = os.path.join(args.output_dir, 'checkpoint-best-ppl') |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
if args.always_save_model: |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
logger.info("Save the best ppl model into %s", output_model_file) |
|
else: |
|
not_loss_dec_cnt += 1 |
|
logger.info("Ppl does not decrease for %d epochs", not_loss_dec_cnt) |
|
if all([x > args.patience for x in [not_bleu_em_inc_cnt, not_loss_dec_cnt]]): |
|
early_stop_str = "[%d] Early stop as not_bleu_em_inc_cnt=%d, and not_loss_dec_cnt=%d\n" % ( |
|
cur_epoch, not_bleu_em_inc_cnt, not_loss_dec_cnt) |
|
logger.info(early_stop_str) |
|
fa.write(early_stop_str) |
|
break |
|
logger.info("***** CUDA.empty_cache() *****") |
|
torch.cuda.empty_cache() |
|
if args.do_eval_bleu: |
|
eval_examples, eval_data = load_and_cache_gen_data(args, args.dev_filename, pool, tokenizer, 'dev', |
|
only_src=True, is_sample=True) |
|
|
|
result = eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, 'dev', 'e%d' % cur_epoch) |
|
dev_bleu, dev_em = result['bleu'], result['em'] |
|
if args.task in ['summarize']: |
|
dev_bleu_em = dev_bleu |
|
elif args.task in ['defect']: |
|
dev_bleu_em = dev_em |
|
else: |
|
dev_bleu_em = dev_bleu + dev_em |
|
if args.data_num == -1: |
|
tb_writer.add_scalar('dev_bleu_em', dev_bleu_em, cur_epoch) |
|
|
|
if dev_bleu_em > best_bleu_em: |
|
not_bleu_em_inc_cnt = 0 |
|
logger.info(" [%d] Best bleu+em: %.2f (bleu: %.2f, em: %.2f)", |
|
cur_epoch, dev_bleu_em, dev_bleu, dev_em) |
|
logger.info(" " + "*" * 20) |
|
best_bleu_em = dev_bleu_em |
|
fa.write("[%d] Best bleu+em changed into %.2f (bleu: %.2f, em: %.2f)\n" % ( |
|
cur_epoch, best_bleu_em, dev_bleu, dev_em)) |
|
|
|
output_dir = os.path.join(args.output_dir, 'checkpoint-best-bleu') |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
if args.data_num == -1 or args.always_save_model: |
|
model_to_save = model.module if hasattr(model, 'module') else model |
|
output_model_file = os.path.join(output_dir, "pytorch_model.bin") |
|
torch.save(model_to_save.state_dict(), output_model_file) |
|
logger.info("Save the best bleu model into %s", output_model_file) |
|
else: |
|
not_bleu_em_inc_cnt += 1 |
|
logger.info("Bleu does not increase for %d epochs", not_bleu_em_inc_cnt) |
|
fa.write( |
|
"[%d] Best bleu+em (%.2f) does not drop changed for %d epochs, cur bleu+em: %.2f (bleu: %.2f, em: %.2f)\n" % ( |
|
cur_epoch, best_bleu_em, not_bleu_em_inc_cnt, dev_bleu_em, dev_bleu, dev_em)) |
|
if all([x > args.patience for x in [not_bleu_em_inc_cnt, not_loss_dec_cnt]]): |
|
stop_early_str = "[%d] Early stop as not_bleu_em_inc_cnt=%d, and not_loss_dec_cnt=%d\n" % ( |
|
cur_epoch, not_bleu_em_inc_cnt, not_loss_dec_cnt) |
|
logger.info(stop_early_str) |
|
fa.write(stop_early_str) |
|
break |
|
logger.info("***** CUDA.empty_cache() *****") |
|
torch.cuda.empty_cache() |
|
|
|
if args.local_rank in [-1, 0] and args.data_num == -1: |
|
tb_writer.close() |
|
logger.info("Finish training and take %s", get_elapse_time(t0)) |
|
|
|
if args.do_test: |
|
logger.info(" " + "***** Testing *****") |
|
logger.info(" Batch size = %d", args.eval_batch_size) |
|
|
|
for criteria in ['best-bleu']: |
|
file = os.path.join(args.output_dir, 'checkpoint-{}/pytorch_model.bin'.format(criteria)) |
|
logger.info("Reload model from {}".format(file)) |
|
model.load_state_dict(torch.load(file)) |
|
eval_examples, eval_data = load_and_cache_gen_data(args, args.test_filename, pool, tokenizer, 'test', |
|
only_src=True, is_sample=False) |
|
result = eval_bleu_epoch(args, eval_data, eval_examples, model, tokenizer, 'test', criteria) |
|
test_bleu, test_em = result['bleu'], result['em'] |
|
test_codebleu = result['codebleu'] if 'codebleu' in result else 0 |
|
result_str = "[%s] bleu-4: %.2f, em: %.4f, codebleu: %.4f\n" % (criteria, test_bleu, test_em, test_codebleu) |
|
logger.info(result_str) |
|
fa.write(result_str) |
|
if args.res_fn: |
|
with open(args.res_fn, 'a+') as f: |
|
f.write('[Time: {}] {}\n'.format(get_elapse_time(t0), file)) |
|
f.write(result_str) |
|
logger.info("Finish and take {}".format(get_elapse_time(t0))) |
|
fa.write("Finish and take {}".format(get_elapse_time(t0))) |
|
fa.close() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|