|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from transformers import (RobertaConfig, RobertaModel, RobertaTokenizer, |
|
BartConfig, BartForConditionalGeneration, BartTokenizer, |
|
T5Config, T5ForConditionalGeneration, T5Tokenizer) |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
MODEL_CLASSES = {'roberta': (RobertaConfig, RobertaModel, RobertaTokenizer), |
|
't5': (T5Config, T5ForConditionalGeneration, T5Tokenizer), |
|
'codet5': (T5Config, T5ForConditionalGeneration, RobertaTokenizer), |
|
'bart': (BartConfig, BartForConditionalGeneration, BartTokenizer)} |
|
|
|
|
|
def get_model_size(model): |
|
model_parameters = filter(lambda p: p.requires_grad, model.parameters()) |
|
model_size = sum([np.prod(p.size()) for p in model_parameters]) |
|
return "{}M".format(round(model_size / 1e+6)) |
|
|
|
|
|
def build_or_load_gen_model(args): |
|
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] |
|
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) |
|
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name) |
|
if args.model_type == 'roberta': |
|
encoder = model_class.from_pretrained(args.model_name_or_path, config=config) |
|
decoder_layer = nn.TransformerDecoderLayer(d_model=config.hidden_size, nhead=config.num_attention_heads) |
|
decoder = nn.TransformerDecoder(decoder_layer, num_layers=6) |
|
model = Seq2Seq(encoder=encoder, decoder=decoder, config=config, |
|
beam_size=args.beam_size, max_length=args.max_target_length, |
|
sos_id=tokenizer.cls_token_id, eos_id=tokenizer.sep_token_id) |
|
else: |
|
model = model_class.from_pretrained(args.model_name_or_path) |
|
|
|
logger.info("Finish loading model [%s] from %s", get_model_size(model), args.model_name_or_path) |
|
|
|
if args.load_model_path is not None: |
|
logger.info("Reload model from {}".format(args.load_model_path)) |
|
model.load_state_dict(torch.load(args.load_model_path)) |
|
|
|
return config, model, tokenizer |
|
|
|
|
|
class RobertaClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size * 2, config.hidden_size) |
|
self.out_proj = nn.Linear(config.hidden_size, 2) |
|
|
|
def forward(self, x, **kwargs): |
|
x = x.reshape(-1, x.size(-1) * 2) |
|
x = self.dense(x) |
|
x = torch.tanh(x) |
|
x = self.out_proj(x) |
|
return x |
|
|
|
|
|
class CloneModel(nn.Module): |
|
def __init__(self, encoder, config, tokenizer, args): |
|
super(CloneModel, self).__init__() |
|
self.encoder = encoder |
|
self.config = config |
|
self.tokenizer = tokenizer |
|
self.classifier = RobertaClassificationHead(config) |
|
self.args = args |
|
|
|
def get_t5_vec(self, source_ids): |
|
attention_mask = source_ids.ne(self.tokenizer.pad_token_id) |
|
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, |
|
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) |
|
hidden_states = outputs['decoder_hidden_states'][-1] |
|
eos_mask = source_ids.eq(self.config.eos_token_id) |
|
|
|
if len(torch.unique(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, |
|
hidden_states.size(-1))[:, -1, :] |
|
return vec |
|
|
|
def get_bart_vec(self, source_ids): |
|
attention_mask = source_ids.ne(self.tokenizer.pad_token_id) |
|
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, |
|
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) |
|
hidden_states = outputs['decoder_hidden_states'][-1] |
|
eos_mask = source_ids.eq(self.config.eos_token_id) |
|
|
|
if len(torch.unique(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, |
|
hidden_states.size(-1))[:, -1, :] |
|
return vec |
|
|
|
def get_roberta_vec(self, source_ids): |
|
attention_mask = source_ids.ne(self.tokenizer.pad_token_id) |
|
vec = self.encoder(input_ids=source_ids, attention_mask=attention_mask)[0][:, 0, :] |
|
return vec |
|
|
|
def forward(self, source_ids=None, labels=None): |
|
source_ids = source_ids.view(-1, self.args.max_source_length) |
|
|
|
if self.args.model_type == 'codet5': |
|
vec = self.get_t5_vec(source_ids) |
|
elif self.args.model_type == 'bart': |
|
vec = self.get_bart_vec(source_ids) |
|
elif self.args.model_type == 'roberta': |
|
vec = self.get_roberta_vec(source_ids) |
|
|
|
logits = self.classifier(vec) |
|
prob = nn.functional.softmax(logits) |
|
|
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits, labels) |
|
return loss, prob |
|
else: |
|
return prob |
|
|
|
|
|
class DefectModel(nn.Module): |
|
def __init__(self, encoder, config, tokenizer, args): |
|
super(DefectModel, self).__init__() |
|
self.encoder = encoder |
|
self.config = config |
|
self.tokenizer = tokenizer |
|
self.classifier = nn.Linear(config.hidden_size, 2) |
|
self.args = args |
|
|
|
def get_t5_vec(self, source_ids): |
|
attention_mask = source_ids.ne(self.tokenizer.pad_token_id) |
|
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, |
|
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) |
|
hidden_states = outputs['decoder_hidden_states'][-1] |
|
eos_mask = source_ids.eq(self.config.eos_token_id) |
|
|
|
if len(torch.unique(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, |
|
hidden_states.size(-1))[:, -1, :] |
|
return vec |
|
|
|
def get_bart_vec(self, source_ids): |
|
attention_mask = source_ids.ne(self.tokenizer.pad_token_id) |
|
outputs = self.encoder(input_ids=source_ids, attention_mask=attention_mask, |
|
labels=source_ids, decoder_attention_mask=attention_mask, output_hidden_states=True) |
|
hidden_states = outputs['decoder_hidden_states'][-1] |
|
eos_mask = source_ids.eq(self.config.eos_token_id) |
|
|
|
if len(torch.unique(eos_mask.sum(1))) > 1: |
|
raise ValueError("All examples must have the same number of <eos> tokens.") |
|
vec = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, |
|
hidden_states.size(-1))[:, -1, :] |
|
return vec |
|
|
|
def get_roberta_vec(self, source_ids): |
|
attention_mask = source_ids.ne(self.tokenizer.pad_token_id) |
|
vec = self.encoder(input_ids=source_ids, attention_mask=attention_mask)[0][:, 0, :] |
|
return vec |
|
|
|
def forward(self, source_ids=None, labels=None): |
|
source_ids = source_ids.view(-1, self.args.max_source_length) |
|
|
|
if self.args.model_type == 'codet5': |
|
vec = self.get_t5_vec(source_ids) |
|
elif self.args.model_type == 'bart': |
|
vec = self.get_bart_vec(source_ids) |
|
elif self.args.model_type == 'roberta': |
|
vec = self.get_roberta_vec(source_ids) |
|
|
|
logits = self.classifier(vec) |
|
prob = nn.functional.softmax(logits) |
|
|
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits, labels) |
|
return loss, prob |
|
else: |
|
return prob |
|
|
|
|
|
|
|
class Seq2Seq(nn.Module): |
|
""" |
|
Build Seqence-to-Sequence. |
|
|
|
Parameters: |
|
|
|
* `encoder`- encoder of seq2seq model. e.g. roberta |
|
* `decoder`- decoder of seq2seq model. e.g. transformer |
|
* `config`- configuration of encoder model. |
|
* `beam_size`- beam size for beam search. |
|
* `max_length`- max length of target for beam search. |
|
* `sos_id`- start of symbol ids in target for beam search. |
|
* `eos_id`- end of symbol ids in target for beam search. |
|
""" |
|
|
|
def __init__(self, encoder, decoder, config, beam_size=None, max_length=None, sos_id=None, eos_id=None): |
|
super(Seq2Seq, self).__init__() |
|
self.encoder = encoder |
|
self.decoder = decoder |
|
self.config = config |
|
self.register_buffer("bias", torch.tril(torch.ones(2048, 2048))) |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.lsm = nn.LogSoftmax(dim=-1) |
|
self.tie_weights() |
|
|
|
self.beam_size = beam_size |
|
self.max_length = max_length |
|
self.sos_id = sos_id |
|
self.eos_id = eos_id |
|
|
|
def _tie_or_clone_weights(self, first_module, second_module): |
|
""" Tie or clone module weights depending of weither we are using TorchScript or not |
|
""" |
|
if self.config.torchscript: |
|
first_module.weight = nn.Parameter(second_module.weight.clone()) |
|
else: |
|
first_module.weight = second_module.weight |
|
|
|
def tie_weights(self): |
|
""" Make sure we are sharing the input and output embeddings. |
|
Export to TorchScript can't handle parameter sharing so we are cloning them instead. |
|
""" |
|
self._tie_or_clone_weights(self.lm_head, |
|
self.encoder.embeddings.word_embeddings) |
|
|
|
def forward(self, source_ids=None, source_mask=None, target_ids=None, target_mask=None, args=None): |
|
outputs = self.encoder(source_ids, attention_mask=source_mask) |
|
encoder_output = outputs[0].permute([1, 0, 2]).contiguous() |
|
if target_ids is not None: |
|
attn_mask = -1e4 * (1 - self.bias[:target_ids.shape[1], :target_ids.shape[1]]) |
|
tgt_embeddings = self.encoder.embeddings(target_ids).permute([1, 0, 2]).contiguous() |
|
out = self.decoder(tgt_embeddings, encoder_output, tgt_mask=attn_mask, |
|
memory_key_padding_mask=~source_mask) |
|
|
|
hidden_states = torch.tanh(self.dense(out)).permute([1, 0, 2]).contiguous() |
|
lm_logits = self.lm_head(hidden_states) |
|
|
|
active_loss = target_mask[..., 1:].ne(0).view(-1) == 1 |
|
shift_logits = lm_logits[..., :-1, :].contiguous() |
|
shift_labels = target_ids[..., 1:].contiguous() |
|
|
|
loss_fct = nn.CrossEntropyLoss(ignore_index=-1) |
|
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1))[active_loss], |
|
shift_labels.view(-1)[active_loss]) |
|
|
|
outputs = loss, loss * active_loss.sum(), active_loss.sum() |
|
return outputs |
|
else: |
|
|
|
preds = [] |
|
zero = torch.cuda.LongTensor(1).fill_(0) |
|
for i in range(source_ids.shape[0]): |
|
context = encoder_output[:, i:i + 1] |
|
context_mask = source_mask[i:i + 1, :] |
|
beam = Beam(self.beam_size, self.sos_id, self.eos_id) |
|
input_ids = beam.getCurrentState() |
|
context = context.repeat(1, self.beam_size, 1) |
|
context_mask = context_mask.repeat(self.beam_size, 1) |
|
for _ in range(self.max_length): |
|
if beam.done(): |
|
break |
|
attn_mask = -1e4 * (1 - self.bias[:input_ids.shape[1], :input_ids.shape[1]]) |
|
tgt_embeddings = self.encoder.embeddings(input_ids).permute([1, 0, 2]).contiguous() |
|
out = self.decoder(tgt_embeddings, context, tgt_mask=attn_mask, |
|
memory_key_padding_mask=~context_mask) |
|
|
|
out = torch.tanh(self.dense(out)) |
|
hidden_states = out.permute([1, 0, 2]).contiguous()[:, -1, :] |
|
out = self.lsm(self.lm_head(hidden_states)).data |
|
beam.advance(out) |
|
input_ids.data.copy_(input_ids.data.index_select(0, beam.getCurrentOrigin())) |
|
input_ids = torch.cat((input_ids, beam.getCurrentState()), -1) |
|
hyp = beam.getHyp(beam.getFinal()) |
|
pred = beam.buildTargetTokens(hyp)[:self.beam_size] |
|
pred = [torch.cat([x.view(-1) for x in p] + [zero] * (self.max_length - len(p))).view(1, -1) for p in |
|
pred] |
|
preds.append(torch.cat(pred, 0).unsqueeze(0)) |
|
|
|
preds = torch.cat(preds, 0) |
|
return preds |
|
|
|
|
|
class Beam(object): |
|
def __init__(self, size, sos, eos): |
|
self.size = size |
|
self.tt = torch.cuda |
|
|
|
self.scores = self.tt.FloatTensor(size).zero_() |
|
|
|
self.prevKs = [] |
|
|
|
self.nextYs = [self.tt.LongTensor(size) |
|
.fill_(0)] |
|
self.nextYs[0][0] = sos |
|
|
|
self._eos = eos |
|
self.eosTop = False |
|
|
|
self.finished = [] |
|
|
|
def getCurrentState(self): |
|
"Get the outputs for the current timestep." |
|
batch = self.tt.LongTensor(self.nextYs[-1]).view(-1, 1) |
|
return batch |
|
|
|
def getCurrentOrigin(self): |
|
"Get the backpointers for the current timestep." |
|
return self.prevKs[-1] |
|
|
|
def advance(self, wordLk): |
|
""" |
|
Given prob over words for every last beam `wordLk` and attention |
|
`attnOut`: Compute and update the beam search. |
|
|
|
Parameters: |
|
|
|
* `wordLk`- probs of advancing from the last step (K x words) |
|
* `attnOut`- attention at the last step |
|
|
|
Returns: True if beam search is complete. |
|
""" |
|
numWords = wordLk.size(1) |
|
|
|
|
|
if len(self.prevKs) > 0: |
|
beamLk = wordLk + self.scores.unsqueeze(1).expand_as(wordLk) |
|
|
|
|
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] == self._eos: |
|
beamLk[i] = -1e20 |
|
else: |
|
beamLk = wordLk[0] |
|
flatBeamLk = beamLk.view(-1) |
|
bestScores, bestScoresId = flatBeamLk.topk(self.size, 0, True, True) |
|
|
|
self.scores = bestScores |
|
|
|
|
|
|
|
prevK = bestScoresId // numWords |
|
self.prevKs.append(prevK) |
|
self.nextYs.append((bestScoresId - prevK * numWords)) |
|
|
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] == self._eos: |
|
s = self.scores[i] |
|
self.finished.append((s, len(self.nextYs) - 1, i)) |
|
|
|
|
|
if self.nextYs[-1][0] == self._eos: |
|
self.eosTop = True |
|
|
|
def done(self): |
|
return self.eosTop and len(self.finished) >= self.size |
|
|
|
def getFinal(self): |
|
if len(self.finished) == 0: |
|
self.finished.append((self.scores[0], len(self.nextYs) - 1, 0)) |
|
self.finished.sort(key=lambda a: -a[0]) |
|
if len(self.finished) != self.size: |
|
unfinished = [] |
|
for i in range(self.nextYs[-1].size(0)): |
|
if self.nextYs[-1][i] != self._eos: |
|
s = self.scores[i] |
|
unfinished.append((s, len(self.nextYs) - 1, i)) |
|
unfinished.sort(key=lambda a: -a[0]) |
|
self.finished += unfinished[:self.size - len(self.finished)] |
|
return self.finished[:self.size] |
|
|
|
def getHyp(self, beam_res): |
|
""" |
|
Walk back to construct the full hypothesis. |
|
""" |
|
hyps = [] |
|
for _, timestep, k in beam_res: |
|
hyp = [] |
|
for j in range(len(self.prevKs[:timestep]) - 1, -1, -1): |
|
hyp.append(self.nextYs[j + 1][k]) |
|
k = self.prevKs[j][k] |
|
hyps.append(hyp[::-1]) |
|
return hyps |
|
|
|
def buildTargetTokens(self, preds): |
|
sentence = [] |
|
for pred in preds: |
|
tokens = [] |
|
for tok in pred: |
|
if tok == self._eos: |
|
break |
|
tokens.append(tok) |
|
sentence.append(tokens) |
|
return sentence |
|
|