File size: 13,750 Bytes
e6adc05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "from PIL import Image\n",
    "from transformers import AutoProcessor, AutoModelForVision2Seq\n",
    "import re\n",
    "import html\n",
    "from threading import Thread\n",
    "from transformers.generation.streamers import TextIteratorStreamer\n",
    "from docling_core.types.doc import DoclingDocument\n",
    "from docling_core.types.doc.document import DocTagsDocument\n",
    "import fitz\n",
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "from tqdm import tqdm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Load model and processor\n",
    "processor = AutoProcessor.from_pretrained(\"ds4sd/SmolDocling-256M-preview\")\n",
    "model = AutoModelForVision2Seq.from_pretrained(\n",
    "    \"ds4sd/SmolDocling-256M-preview\", \n",
    "    torch_dtype=torch.bfloat16\n",
    ").to(\"cuda\" if torch.cuda.is_available() else \"cpu\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "def image_to_markdown(image, query_text=\"Convert this page to docling.\"):\n",
    "    \"\"\"\n",
    "    Convert an input image to markdown output using SmolDocling model\n",
    "    \n",
    "    Parameters:\n",
    "    image: Input image file in RGB\n",
    "    query_text (str): Query text to guide the conversion (default: \"Convert this page to docling.\")\n",
    "    \n",
    "    Returns:\n",
    "    str: Markdown output of the converted image\n",
    "    \"\"\"\n",
    "    \n",
    "    # Special handling for code or OTSL content\n",
    "    if \"OTSL\" in query_text or \"code\" in query_text:\n",
    "        # Add padding to image as in the original code\n",
    "        width, height = image.size\n",
    "        pad_w = int(width * 0.1)  # 10% padding\n",
    "        pad_h = int(height * 0.1)  # 10% padding\n",
    "        corner_pixel = image.getpixel((0, 0))\n",
    "        from PIL import ImageOps\n",
    "        image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)\n",
    "    \n",
    "    # Prepare input for the model\n",
    "    resulting_messages = [\n",
    "        {\n",
    "            \"role\": \"user\",\n",
    "            \"content\": [{\"type\": \"image\"}] + [\n",
    "                {\"type\": \"text\", \"text\": query_text}\n",
    "            ]\n",
    "        }\n",
    "    ]\n",
    "    \n",
    "    prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)\n",
    "    inputs = processor(text=prompt, images=[[image]], return_tensors=\"pt\").to(model.device)\n",
    "    \n",
    "    # Generate output using streamer for better memory management\n",
    "    streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)\n",
    "    generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)\n",
    "    \n",
    "    thread = Thread(target=model.generate, kwargs=generation_args)\n",
    "    thread.start()\n",
    "    \n",
    "    # Collect the generated output\n",
    "    full_output = \"\"\n",
    "    for new_text in streamer:\n",
    "        full_output += new_text\n",
    "    \n",
    "    # Clean up the output\n",
    "    cleaned_output = full_output.replace(\"<end_of_utterance>\", \"\").strip()\n",
    "    \n",
    "    # Process doctags if present\n",
    "    if any(tag in cleaned_output for tag in [\"<doctag>\", \"<otsl>\", \"<code>\", \"<chart>\", \"<formula>\"]):\n",
    "        doctag_output = cleaned_output\n",
    "        \n",
    "        # Handle chart tags\n",
    "        if \"<chart>\" in doctag_output:\n",
    "            doctag_output = doctag_output.replace(\"<chart>\", \"<otsl>\").replace(\"</chart>\", \"</otsl>\")\n",
    "            doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\\1', doctag_output)\n",
    "        \n",
    "        # Create document and convert to markdown\n",
    "        doc = DoclingDocument(name=\"Document\")\n",
    "        doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], [image])\n",
    "        doc.load_from_doctags(doctags_doc)\n",
    "        \n",
    "        return doc.export_to_markdown()\n",
    "    \n",
    "    # Return the cleaned output if no doctags are present\n",
    "    return cleaned_output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "def process_pdfs_folder(pdf_folder, output_folder):\n",
    "    \"\"\"\n",
    "    Process all PDFs in a folder, converting each page to markdown immediately and saving results as JSON.\n",
    "    \n",
    "    Parameters:\n",
    "    pdf_folder (str): Path to folder containing PDFs\n",
    "    output_folder (str): Path to save output JSON files\n",
    "    \"\"\"\n",
    "    # Create output folder if it doesn't exist\n",
    "    if not os.path.exists(output_folder):\n",
    "        os.makedirs(output_folder)\n",
    "    \n",
    "    # Get all PDF files in the folder\n",
    "    pdf_files = [f for f in os.listdir(pdf_folder) if f.lower().endswith('.pdf')]\n",
    "    \n",
    "    # Process each PDF file\n",
    "    for pdf_file in tqdm(pdf_files, desc=\"Processing PDFs\"):\n",
    "        pdf_path = os.path.join(pdf_folder, pdf_file)\n",
    "        pdf_name = os.path.splitext(pdf_file)[0]\n",
    "        output_json = os.path.join(output_folder, f\"{pdf_name}.json\")\n",
    "        \n",
    "        # Initialize an empty list to store the data\n",
    "        pdf_data = []\n",
    "        \n",
    "        try:\n",
    "            # Open the PDF\n",
    "            pdf_document = fitz.open(pdf_path)\n",
    "            total_pages = pdf_document.page_count\n",
    "            \n",
    "            print(f\"Processing {pdf_file} ({total_pages} pages)\")\n",
    "            \n",
    "            # Process each page one by one\n",
    "            for page_number in tqdm(range(total_pages), desc=f\"Pages in {pdf_file}\", leave=False):\n",
    "                try:\n",
    "                    # Get the page\n",
    "                    page = pdf_document[page_number]\n",
    "                    \n",
    "                    # Convert page to image\n",
    "                    pixmap = page.get_pixmap()\n",
    "                    image = Image.frombytes(\"RGB\", [pixmap.width, pixmap.height], pixmap.samples)\n",
    "                    \n",
    "                    # Convert image to markdown immediately\n",
    "                    markdown_text = image_to_markdown(image)\n",
    "                    \n",
    "                    # Display first 100 characters for verification\n",
    "                    preview = markdown_text[:100].replace('\\n', ' ')\n",
    "                    print(f\"Page {page_number+1}/{total_pages}: {preview}...\")\n",
    "                    \n",
    "                    # Add to data list\n",
    "                    page_data = {\n",
    "                        'pdf_name': pdf_name,\n",
    "                        'slide_number': page_number+1,\n",
    "                        'markdown_text': markdown_text\n",
    "                    }\n",
    "                    pdf_data.append(page_data)\n",
    "                    \n",
    "                    # Save JSON after each page\n",
    "                    with open(output_json, 'w', encoding='utf-8') as jsonfile:\n",
    "                        json.dump(pdf_data, jsonfile, ensure_ascii=False, indent=2)\n",
    "                    \n",
    "                except Exception as e:\n",
    "                    error_msg = f\"Error processing page {page_number+1} from {pdf_file}: {e}\"\n",
    "                    print(error_msg)\n",
    "                    # Add error info to data\n",
    "                    error_data = {\n",
    "                        'pdf_name': pdf_name,\n",
    "                        'slide_number': page_number+1,\n",
    "                        'markdown_text': f\"ERROR: {str(e)}\"\n",
    "                    }\n",
    "                    pdf_data.append(error_data)\n",
    "                    \n",
    "                    # Save JSON after error\n",
    "                    with open(output_json, 'w', encoding='utf-8') as jsonfile:\n",
    "                        json.dump(pdf_data, jsonfile, ensure_ascii=False, indent=2)\n",
    "            \n",
    "            # Close the PDF after processing\n",
    "            pdf_document.close()\n",
    "            \n",
    "        except Exception as e:\n",
    "            error_msg = f\"Error opening PDF {pdf_file}: {e}\"\n",
    "            print(error_msg)\n",
    "            error_data = {\n",
    "                'pdf_name': pdf_name,\n",
    "                'slide_number': 1,\n",
    "                'markdown_text': f\"ERROR: Failed to process PDF: {str(e)}\"\n",
    "            }\n",
    "            pdf_data.append(error_data)\n",
    "            \n",
    "            # Save JSON after PDF error\n",
    "            with open(output_json, 'w', encoding='utf-8') as jsonfile:\n",
    "                json.dump(pdf_data, jsonfile, ensure_ascii=False, indent=2)\n",
    "    \n",
    "    print(f\"Processing complete. Results saved to {output_folder}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# input_folder = \"/fsx/avijit/projects/datacommonsMA/labormarketreports/pdfs\" ## First convert the ppts to pdf\n",
    "# output_folder = \"/fsx/avijit/projects/datacommonsMA/labormarketreports/processed_reports\"\n",
    "\n",
    "input_folder = \"/fsx/avijit/projects/datacommonsMA/occupational_injury_reports/pdfs\"\n",
    "output_folder = \"/fsx/avijit/projects/datacommonsMA/occupational_injury_reports/processed_reports\"\n",
    "\n",
    "process_pdfs_folder(input_folder,output_folder)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def combine_json_files(folder_path, output_file=\"combined_results.json\"):\n",
    "    \"\"\"\n",
    "    Read individual JSON files from a folder and simply concatenate them,\n",
    "    changing \"pdf_name\" to \"report name\" in each entry.\n",
    "    \n",
    "    Args:\n",
    "        folder_path (str): Path to the folder containing JSON files\n",
    "        output_file (str): Path to save the combined JSON file\n",
    "    \n",
    "    Returns:\n",
    "        list: The combined data list\n",
    "    \"\"\"\n",
    "    import json\n",
    "    from pathlib import Path\n",
    "    \n",
    "    # Initialize data list\n",
    "    combined_data = []\n",
    "    \n",
    "    # Get all JSON files in the folder\n",
    "    folder_path = Path(folder_path)\n",
    "    json_files = list(folder_path.glob(\"*.json\"))\n",
    "    \n",
    "    if not json_files:\n",
    "        print(f\"No JSON files found in {folder_path}\")\n",
    "        return []\n",
    "    \n",
    "    print(f\"Found {len(json_files)} JSON files in {folder_path}\")\n",
    "    \n",
    "    # Read each JSON file\n",
    "    for json_file in json_files:\n",
    "        try:\n",
    "            with open(json_file, \"r\", encoding=\"utf-8\") as f:\n",
    "                file_data = json.load(f)\n",
    "                \n",
    "                # Handle both list and single object formats\n",
    "                if isinstance(file_data, list):\n",
    "                    items = file_data\n",
    "                else:\n",
    "                    items = [file_data]\n",
    "                \n",
    "                # Rename pdf_name to report name in each item\n",
    "                for item in items:\n",
    "                    if \"pdf_name\" in item:\n",
    "                        item[\"report name\"] = item.pop(\"pdf_name\")\n",
    "                        item[\"page number\"] = item.pop(\"slide_number\")\n",
    "                \n",
    "                # Add to combined data\n",
    "                combined_data.extend(items)\n",
    "                \n",
    "        except Exception as e:\n",
    "            print(f\"Error reading {json_file}: {e}\")\n",
    "    \n",
    "    # Write to file\n",
    "    with open(output_file, \"w\", encoding=\"utf-8\") as f:\n",
    "        json.dump(combined_data, output_folder+'/'+f, indent=2, ensure_ascii=False)\n",
    "    \n",
    "    print(f\"Combined {len(combined_data)} items into {output_file}\")\n",
    "    return combined_data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Found 7 JSON files in /fsx/avijit/projects/datacommonsMA/occupational_injury_reports/processed_reports\n",
      "Error reading /fsx/avijit/projects/datacommonsMA/occupational_injury_reports/processed_reports/combined_reports.json: Extra data: line 73 column 1 (char 109380)\n",
      "Combined 78 items into occupational_injury_combined_reports.json\n"
     ]
    }
   ],
   "source": [
    "combined_data = combine_json_files(output_folder, \"occupational_injury_combined_reports.json\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "py312",
   "language": "python",
   "name": "py312"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}