--- license: cc0-1.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* dataset_info: features: - name: experiment_name dtype: string - name: evidence_index dtype: int64 - name: scan_number dtype: int64 - name: sequence dtype: string - name: modified_sequence dtype: string - name: precursor_mz dtype: float64 - name: precursor_recalibrated_mz dtype: float64 - name: precursor_mass dtype: float64 - name: precursor_charge dtype: int64 - name: retention_time dtype: float64 - name: mz_array sequence: float32 - name: intensity_array sequence: float32 splits: - name: train num_bytes: 3370985593 num_examples: 2132847 - name: validation num_bytes: 413243959 num_examples: 257187 - name: test num_bytes: 421581021 num_examples: 265369 download_size: 3944832530 dataset_size: 4205810573 --- # Dataset Card for High-Confidence ProteomeTools Dataset used to train, validate and test InstaNovo and InstaNovo+. ## Dataset Description - **Repository:** [InstaNovo](https://github.com/instadeepai/InstaNovo) - **Paper:** [De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments](https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1) ### Dataset Summary This dataset consists of the highest-confidence peptide-spectral matches from three parts of the [ProteomeTools](https://www.proteometools.org/) datasets. The original datasets may be found in the PRIDE repository with identifiers: - `PXD004732` (Part I) - `PXD010595` (Part II) - `PXD021013` (Part III) The dataset has been split on unique peptides with the following ratio: - 80% train - 10% validation - 10% test ## Dataset Structure The dataset is tabular, where each row corresponds to a labelled MS2 spectra. - `sequence (string)` \ The target peptide sequence excluding post-translational modifications - `modified_sequence (string)` \ The target peptide sequence including post-translational modifications - `precursor_mz (float64)` \ The mass-to-charge of the precursor (from MS1) - `charge (int64)` \ The charge of the precursor (from MS1) - `mz_array (list[float64])` \ The mass-to-charge values of the MS2 spectrum - `mz_array (list[float32])` \ The intensity values of the MS2 spectrum MaxQuant additional columns: - `experiment_name (string)` - `evidence_index (in64)` - `scan_number (in64)` - `precursor_recalibrated_mz (float64)` ## Citation Information If you use this dataset, please cite the original authors. The original [ProteomeTools](https://www.proteometools.org/) data is available on [PRIDE](https://www.ebi.ac.uk/pride/) with identifiers `PXD004732` (Part I), `PXD010595` (Part II), and `PXD021013` (Part III). Please also cite InstaNovo: ```bibtex @article{eloff_kalogeropoulos_2023_instanovo, title = {De novo peptide sequencing with InstaNovo: Accurate, database-free peptide identification for large scale proteomics experiments}, author = {Kevin Eloff and Konstantinos Kalogeropoulos and Oliver Morell and Amandla Mabona and Jakob Berg Jespersen and Wesley Williams and Sam van Beljouw and Marcin Skwark and Andreas Hougaard Laustsen and Stan J. J. Brouns and Anne Ljungars and Erwin Marten Schoof and Jeroen Van Goey and Ulrich auf dem Keller and Karim Beguir and Nicolas Lopez Carranza and Timothy Patrick Jenkins}, year = {2023}, doi = {10.1101/2023.08.30.555055}, publisher = {Cold Spring Harbor Laboratory}, URL = {https://www.biorxiv.org/content/10.1101/2023.08.30.555055v1}, journal = {bioRxiv} } ```