File size: 2,292 Bytes
60bd156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# CodeT5SmallCAPS Experiment Reproducing package

- To run the pre-train objective use the following scripts:
  
  - Reproduce CodeT5SmallCAPS with all objectives:
    
    - Navigate the folder `Pre-training` containing the `CodeT5SmallCAPS.py` file
    - Then, run `Python CodeT5SmallCAPS.py --train-tt --train-cs --train-pd`
      
      - The pretrained model is released on [hugging face](https://huggingface.co/CodeT5SmallCAPS/CAPS_pretrained), therefore it automatically loads.

  - To run the ablation studies:
    
    - Ablation 1: `Python CodeT5SmallCAPS.py --train-tt`
    - Ablation 2: `Python CodeT5SmallCAPS.py --train-tt --train-cs`
    - Ablation 3: `Python CodeT5SmallCAPS.py --train-tt --train-cs --train-pd`

- To `Fine-tuning` CodeT5SmallCAPS on downstream tasks:
  
  - Navigate to the `Fine-tuning` folder and then `Downstream task` folder:
     
    - Code Clone Detection:
      - Follow the instruction of `readme.md` file.
        
    - Code Translation:
      
      - Run `setup.sh` file.
      - Navigate to the `scripts/finetune` and run `translate.sh` file.

- To extract the programming language features (i.e., `token type`, `code sememe`, and `code dependencies`)
  - We used open source datasets to extract language features. we released the extracted datasets on the Hugging Face:
    - `LT_Java` :  [CodeT5SmallCAPS/CAPS_Java](https://huggingface.co/datasets/CodeT5SmallCAPS/CAPS_Java)
    - `LT_Python` :  [CodeT5SmallCAPS/CAPS_Python](https://huggingface.co/datasets/CodeT5SmallCAPS/CAPS_Python)
    - `LT_Java_Dependency` :  [CodeT5SmallCAPS/CAPS_Java_Dependency](https://huggingface.co/datasets/CodeT5SmallCAPS/CAPS_Java_Dependency)

  - Navigate to the utils directory:
    - Use either the `Java` or `Python` notebook file to run over your dataset.
    - Run the cells, for which, you want to extract the features.

- Dependencies:
  - Feature extraction dependencies:
    ```bash
    - pip install ast-comments
    - pip install ast
    - pip install javalang
    - pip install tree-sitter
    
  - Model training dependencies:
    ``` bash
    - pip install transformers 
    - pip install datasets
    - pip install pytorch_lightning
    - pip install torch

  - Install the required packages:
    ``` bash
    - pip install -r requirements.txt