StyleTTS2-lite-vi / inference.py
dangtr0408's picture
minor changes
6985472
import re
import sys
import yaml
from munch import Munch
import unicodedata
import numpy as np
import librosa
import noisereduce as nr
import phonemizer
import torch
import torchaudio
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt_tab')
from models import ProsodyPredictor, TextEncoder, StyleEncoder
from Modules.hifigan import Decoder
if sys.platform.startswith("win"):
try:
from phonemizer.backend.espeak.wrapper import EspeakWrapper
import espeakng_loader
EspeakWrapper.set_library(espeakng_loader.get_library_path())
except Exception as e:
print(e)
def espeak_phn(text, lang):
try:
my_phonemizer = phonemizer.backend.EspeakBackend(language=lang, preserve_punctuation=True, with_stress=True, language_switch='remove-flags')
return my_phonemizer.phonemize([text])[0]
except Exception as e:
print(e)
# IPA Phonemizer: https://github.com/bootphon/phonemizer
# Total including extend chars 189
_pad = "$"
_punctuation = ';:,.!?¡¿—…"«»“” '
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
_extend = "∫̆ăη͡123456"
# Export all symbols:
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_extend)
dicts = {}
for i in range(len((symbols))):
dicts[symbols[i]] = i
class TextCleaner:
def __init__(self, dummy=None):
self.word_index_dictionary = dicts
#print(len(dicts))
def __call__(self, text):
indexes = []
for char in text:
try:
indexes.append(self.word_index_dictionary[char])
except KeyError as e:
#print(char)
continue
return indexes
class Preprocess:
def __text_normalize(self, text):
punctuation = [",", "、", "،", ";", "(", ".", "。", "…", "!", "–", ":", "?"]
map_to = "."
punctuation_pattern = re.compile(f"[{''.join(re.escape(p) for p in punctuation)}]")
#ensure consistency.
text = unicodedata.normalize('NFKC', text)
#replace punctuation that acts like a comma or period
#text = re.sub(r'\.{2,}', '.', text)
text = punctuation_pattern.sub(map_to, text)
#remove or replace special chars except . , { } % $ & ' - \ /
text = re.sub(r'[^\w\s.,{}%$&\'\-\[\]\/]', ' ', text)
#replace consecutive whitespace chars with a single space and strip leading/trailing spaces
text = re.sub(r'\s+', ' ', text).strip()
return text
def __merge_fragments(self, texts, n):
merged = []
i = 0
while i < len(texts):
fragment = texts[i]
j = i + 1
while len(fragment.split()) < n and j < len(texts):
fragment += ", " + texts[j]
j += 1
merged.append(fragment)
i = j
if len(merged[-1].split()) < n and len(merged) > 1: #handle last sentence
merged[-2] = merged[-2] + ", " + merged[-1]
del merged[-1]
else:
merged[-1] = merged[-1]
return merged
def wave_preprocess(self, wave):
to_mel = torchaudio.transforms.MelSpectrogram(n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def text_preprocess(self, text, n_merge=12):
text_norm = self.__text_normalize(text).replace(",", ".").split(".")#split.
text_norm = [s.strip() for s in text_norm]
text_norm = list(filter(lambda x: x != '', text_norm)) #filter empty index
text_norm = self.__merge_fragments(text_norm, n=n_merge) #merge if a sentence has less that n
return text_norm
def length_to_mask(self, lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
#For inference only
class StyleTTS2(torch.nn.Module):
def __init__(self, config_path, models_path):
super().__init__()
self.register_buffer("get_device", torch.empty(0))
self.preprocess = Preprocess()
config = yaml.safe_load(open(config_path))
args = self.__recursive_munch(config['model_params'])
assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
self.decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
upsample_rates = args.decoder.upsample_rates,
upsample_initial_channel=args.decoder.upsample_initial_channel,
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
self.predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
self.text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
self.style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim)# acoustic style encoder
self.__load_models(models_path)
def __recursive_munch(self, d):
if isinstance(d, dict):
return Munch((k, self.__recursive_munch(v)) for k, v in d.items())
elif isinstance(d, list):
return [self.__recursive_munch(v) for v in d]
else:
return d
def __init_replacement_func(self, replacements):
replacement_iter = iter(replacements)
def replacement(match):
return next(replacement_iter)
return replacement
def __replace_outliers_zscore(self, tensor, threshold=3.0, factor=0.95):
mean = tensor.mean()
std = tensor.std()
z = (tensor - mean) / std
# Identify outliers
outlier_mask = torch.abs(z) > threshold
# Compute replacement value, respecting sign
sign = torch.sign(tensor - mean)
replacement = mean + sign * (threshold * std * factor)
result = tensor.clone()
result[outlier_mask] = replacement[outlier_mask]
return result
def __load_models(self, models_path):
module_params = []
model = {'decoder':self.decoder, 'predictor':self.predictor, 'text_encoder':self.text_encoder, 'style_encoder':self.style_encoder}
params_whole = torch.load(models_path, map_location='cpu')
params = params_whole['net']
params = {key: value for key, value in params.items() if key in model.keys()}
for key in model:
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
total_params = sum(p.numel() for p in model[key].parameters())
print(key,":",total_params)
module_params.append(total_params)
print('\nTotal',":",sum(module_params))
def __compute_style(self, path, denoise, split_dur):
device = self.get_device.device
denoise = min(denoise, 1)
if split_dur != 0: split_dur = max(int(split_dur), 1)
max_samples = 24000*20 #max 20 seconds ref audio
print("Computing the style for:", path)
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
if len(audio) > max_samples:
audio = audio[:max_samples]
if denoise > 0.0:
audio_denoise = nr.reduce_noise(y=audio, sr=sr, n_fft=2048, win_length=1200, hop_length=300)
audio = audio*(1-denoise) + audio_denoise*denoise
with torch.no_grad():
if split_dur>0 and len(audio)/sr>=4: #Only effective if audio length is >= 4s
#This option will split the ref audio to multiple parts, calculate styles and average them
count = 0
ref_s = None
jump = sr*split_dur
total_len = len(audio)
#Need to init before the loop
mel_tensor = self.preprocess.wave_preprocess(audio[0:jump]).to(device)
ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
for i in range(jump, total_len, jump):
if i+jump >= total_len:
left_dur = (total_len-i)/sr
if left_dur >= 0.5: #Still count if left over dur is >= 0.5s
mel_tensor = self.preprocess.wave_preprocess(audio[i:total_len]).to(device)
ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
continue
mel_tensor = self.preprocess.wave_preprocess(audio[i:i+jump]).to(device)
ref_s += self.style_encoder(mel_tensor.unsqueeze(1))
count += 1
ref_s /= count
else:
mel_tensor = self.preprocess.wave_preprocess(audio).to(device)
ref_s = self.style_encoder(mel_tensor.unsqueeze(1))
return ref_s
def __inference(self, phonem, ref_s, speed=1, prev_d_mean=0, t=0.1):
device = self.get_device.device
speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
phonem = ' '.join(word_tokenize(phonem))
tokens = TextCleaner()(phonem)
tokens.insert(0, 0)
tokens.append(0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = self.preprocess.length_to_mask(input_lengths).to(device)
# encode
t_en = self.text_encoder(tokens, input_lengths, text_mask)
s = ref_s.to(device)
# cal alignment
d = self.predictor.text_encoder(t_en, s, input_lengths, text_mask)
x, _ = self.predictor.lstm(d)
duration = self.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)
if prev_d_mean != 0:#Stabilize speaking speed between splits
dur_stats = torch.empty(duration.shape).normal_(mean=prev_d_mean, std=duration.std()).to(device)
else:
dur_stats = torch.empty(duration.shape).normal_(mean=duration.mean(), std=duration.std()).to(device)
duration = duration*(1-t) + dur_stats*t
duration[:,1:-2] = self.__replace_outliers_zscore(duration[:,1:-2]) #Normalize outlier
duration /= speed
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
alignment = pred_aln_trg.unsqueeze(0).to(device)
# encode prosody
en = (d.transpose(-1, -2) @ alignment)
F0_pred, N_pred = self.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = self.decoder(asr, F0_pred, N_pred, s)
return out.squeeze().cpu().numpy(), duration.mean()
def get_styles(self, speakers, denoise=0.3, avg_style=True):
if avg_style: split_dur = 2
else: split_dur = 0
styles = {}
for id in speakers:
ref_s = self.__compute_style(speakers[id]['path'], denoise=denoise, split_dur=split_dur)
styles[id] = {
'style': ref_s,
'path': speakers[id]['path'],
'lang': speakers[id]['lang'],
'speed': speakers[id]['speed'],
}
return styles
def generate(self, text, styles, stabilize=True, n_merge=16, default_speaker= "[id_1]"):
if stabilize: smooth_value=0.2
else: smooth_value=0
list_wav = []
prev_d_mean = 0
lang_pattern = r'\[([^\]]+)\]\{([^}]+)\}'
text = re.sub(r'[\n\r\t\f\v]', '', text)
#fix lang tokens span to multiple sents
find_lang_tokens = re.findall(lang_pattern, text)
if find_lang_tokens:
cus_text = []
for lang, t in find_lang_tokens:
parts = self.preprocess.text_preprocess(t, n_merge=0)
parts = ".".join([f"[{lang}]" + f"{{{p}}}"for p in parts])
cus_text.append(parts)
replacement_func = self.__init_replacement_func(cus_text)
text = re.sub(lang_pattern, replacement_func, text)
texts = re.split(r'(\[id_\d+\])', text) #split the text by speaker ids while keeping the ids.
if len(texts) <= 1 or bool(re.match(r'(\[id_\d+\])', texts[0]) == False): #Add a default speaker
texts.insert(0, default_speaker)
curr_id = None
for i in range(len(texts)): #remove consecutive ids
if bool(re.match(r'(\[id_\d+\])', texts[i])):
if texts[i]!=curr_id:
curr_id = texts[i]
else:
texts[i] = ''
del curr_id
texts = list(filter(lambda x: x != '', texts))
print("Generating Audio...")
for i in texts:
if bool(re.match(r'(\[id_\d+\])', i)):
#Set up env for matched speaker
speaker_id = i.strip('[]')
current_ref_s = styles[speaker_id]['style']
speed = styles[speaker_id]['speed']
continue
text_norm = self.preprocess.text_preprocess(i, n_merge=n_merge)
for sentence in text_norm:
cus_phonem = []
find_lang_tokens = re.findall(lang_pattern, sentence)
if find_lang_tokens:
for lang, t in find_lang_tokens:
try:
phonem = espeak_phn(t, lang)
cus_phonem.append(phonem)
except Exception as e:
print(e)
replacement_func = self.__init_replacement_func(cus_phonem)
phonem = espeak_phn(sentence, styles[speaker_id]['lang'])
phonem = re.sub(lang_pattern, replacement_func, phonem)
wav, prev_d_mean = self.__inference(phonem, current_ref_s, speed=speed, prev_d_mean=prev_d_mean, t=smooth_value)
wav = wav[4000:-4000] #Remove weird pulse and silent tokens
list_wav.append(wav)
final_wav = np.concatenate(list_wav)
final_wav = np.concatenate([np.zeros([4000]), final_wav, np.zeros([4000])], axis=0) # add padding
return final_wav