claudios commited on
Commit
22496d3
·
verified ·
1 Parent(s): a8d881c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +224 -190
README.md CHANGED
@@ -1,199 +1,233 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - code
5
+ license: apache-2.0
6
  ---
7
 
8
+ # UniXcoder Base Unimodal
9
+
10
+ This is an *unofficial* reupload of [microsoft/unixcoder-base-unimodal](https://huggingface.co/microsoft/unixcoder-base-unimodal) in the `SafeTensors` format using `transformers` `4.41.2`. The goal of this reupload is to prevent older models that are still relevant baselines from becoming stale as a result of changes in HuggingFace. Additionally, I may include minor corrections, such as model max length configuration.
11
+
12
+ ## Properties
13
+ +-----------------------------------------+
14
+ | Property | Value |
15
+ +----------------------------+------------+
16
+ | Number Of Parameters | 124,842,240|
17
+ +----------------------------+------------+
18
+ | Torch Dtype | Float32 |
19
+ +----------------------------+------------+
20
+ | Architectures |RobertaModel|
21
+ +----------------------------+------------+
22
+ | Bos Token Id | 0 |
23
+ +----------------------------+------------+
24
+ | Pad Token Id | 1 |
25
+ +----------------------------+------------+
26
+ | Eos Token Id | 2 |
27
+ +----------------------------+------------+
28
+ | Transformers Version | 4.41.2 |
29
+ +----------------------------+------------+
30
+ | Model Type | Roberta |
31
+ +----------------------------+------------+
32
+ | Vocab Size | 50,000 |
33
+ +----------------------------+------------+
34
+ | Hidden Size | 768 |
35
+ +----------------------------+------------+
36
+ | Num Hidden Layers | 12 |
37
+ +----------------------------+------------+
38
+ | Num Attention Heads | 12 |
39
+ +----------------------------+------------+
40
+ | Hidden Act | Gelu |
41
+ +----------------------------+------------+
42
+ | Intermediate Size | 3,072 |
43
+ +----------------------------+------------+
44
+ | Hidden Dropout Prob | 0.10 |
45
+ +----------------------------+------------+
46
+ |Attention Probs Dropout Prob| 0.10 |
47
+ +----------------------------+------------+
48
+ | Max Position Embeddings | 1,026 |
49
+ +----------------------------+------------+
50
+ | Type Vocab Size | 10 |
51
+ +----------------------------+------------+
52
+ | Initializer Range | 0.02 |
53
+ +----------------------------+------------+
54
+ | Layer Norm Eps | 0.00 |
55
+ +----------------------------+------------+
56
+ | Position Embedding Type | Absolute |
57
+ +-----------------------------------------+
58
+
59
+ Original model card of `unixcoder-base` below:
60
 
61
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ # Model Card for UniXcoder-base
64
+
65
+
66
+
67
+ # Model Details
68
+
69
+ ## Model Description
70
+ UniXcoder is a unified cross-modal pre-trained model that leverages multimodal data (i.e. code comment and AST) to pretrain code representation.
71
+
72
+ - **Developed by:** Microsoft Team
73
+ - **Shared by [Optional]:** Hugging Face
74
+ - **Model type:** Feature Engineering
75
+ - **Language(s) (NLP):** en
76
+ - **License:** Apache-2.0
77
+ - **Related Models:**
78
+ - **Parent Model:** RoBERTa
79
+ - **Resources for more information:**
80
+ - [Associated Paper](https://arxiv.org/abs/2203.03850)
81
+
82
+ # Uses
83
+
84
+
85
+
86
+ ## Direct Use
87
+ Feature Engineering
88
+
89
+
90
+ ## Downstream Use [Optional]
91
+
92
+ More information needed
93
+
94
+ ## Out-of-Scope Use
95
+
96
+ More information needed
97
+
98
+ # Bias, Risks, and Limitations
99
+
100
+ Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
101
+
102
+
103
+ ## Recommendations
104
+
105
+
106
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
107
+
108
+
109
+ # Training Details
110
+
111
+ ## Training Data
112
+
113
+ More information needed
114
+
115
+ ## Training Procedure
116
+
117
+ ### Preprocessing
118
+
119
+ More information needed
120
+
121
+ ### Speeds, Sizes, Times
122
+ More information needed
123
+
124
+ # Evaluation
125
+
126
+
127
+ ## Testing Data, Factors & Metrics
128
+
129
+ ### Testing Data
130
+ More information needed
131
+
132
+ ### Factors
133
+
134
+ The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850):
135
+
136
+ > UniXcoder has slightly worse BLEU-4 scores on both code summarization and generation tasks. The main reasons may come from two aspects. One is the amount of NL-PL pairs in the pre-training data
137
+
138
+ ### Metrics
139
+
140
+ The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850):
141
+
142
+ > We evaluate UniXcoder on five tasks over nine public datasets, including two understanding tasks, two generation tasks and an autoregressive task. To further evaluate the performance of code fragment embeddings, we also propose a new task called zero-shot code-to-code search.
143
+
144
+ ## Results
145
+
146
+ The model creators note in the [associated paper](https://arxiv.org/abs/2203.03850):
147
+
148
+ >Taking zero-shot code-code search task as an example, after removing contrastive learning, the performance drops from 20.45% to 13.73%.
149
+
150
+ # Model Examination
151
+
152
+ More information needed
153
+
154
+ # Environmental Impact
155
+
156
+
157
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
159
+
160
+ - **Hardware Type:** More information needed
161
+ - **Hours used:** More information needed
162
+ - **Cloud Provider:** More information needed
163
+ - **Compute Region:** More information needed
164
+ - **Carbon Emitted:** More information needed
165
+
166
+ # Technical Specifications [optional]
167
+
168
+ ## Model Architecture and Objective
169
+
170
+ More information needed
171
+
172
+ ## Compute Infrastructure
173
+
174
+ More information needed
175
+
176
+ ### Hardware
177
+
178
+ More information needed
179
+
180
+ ### Software
181
+
182
+ More information needed
183
+
184
+ # Citation
185
+
186
+
 
187
  **BibTeX:**
188
+ ```
189
+ @misc{https://doi.org/10.48550/arxiv.2203.03850,
190
+ doi = {10.48550/ARXIV.2203.03850},
191
+
192
+ url = {https://arxiv.org/abs/2203.03850},
193
+
194
+ author = {Guo, Daya and Lu, Shuai and Duan, Nan and Wang, Yanlin and Zhou, Ming and Yin, Jian},
195
+
196
+ keywords = {Computation and Language (cs.CL), Programming Languages (cs.PL), Software Engineering (cs.SE), FOS: Computer and information sciences, FOS: Computer and information sciences},
197
+
198
+ title = {UniXcoder: Unified Cross-Modal Pre-training for Code
199
+ ```
200
+
201
+
202
+ # Glossary [optional]
203
+
204
+ More information needed
205
+
206
+ # More Information [optional]
207
+
208
+ More information needed
209
+
210
+ # Model Card Authors [optional]
211
+
212
+ Microsoft Team in collaboration with Ezi Ozoani and the Hugging Face Team.
213
+
214
+ # Model Card Contact
215
+
216
+ More information needed
217
+
218
+ # How to Get Started with the Model
219
+
220
+ Use the code below to get started with the model.
221
+
222
+ <details>
223
+ <summary> Click to expand </summary>
224
+
225
+ ```python
226
+ from transformers import AutoTokenizer, AutoModel
227
+
228
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/unixcoder-base")
229
+
230
+ model = AutoModel.from_pretrained("microsoft/unixcoder-base")
231
+
232
+ ```
233
+ </details>