File size: 11,976 Bytes
0d9a24b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import re
import types
import io
import torch
from PIL import Image
from qwen_vl_utils import fetch_image

from transformers import (
    ProcessorMixin, 
    SiglipImageProcessor, 
    BatchFeature, 
    Qwen2VLImageProcessor,
    PreTrainedTokenizer
)

from .utils import (
    process_anyres_image,
    BLACK_IMG_ENV, 
    DEFAULT_IM_END_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_VI_END_TOKEN,
    DEFAULT_VI_START_TOKEN,
    DEFAULT_VIDEO_TOKEN,
    IMAGE_TOKEN_INDEX,
    SEQ_MAX_LEN,  
)

siglip_processor_config = {
    "do_normalize": True,
    "do_rescale": True,
    "do_resize": True,
    "image_mean": [
        0.5,
        0.5,
        0.5
    ],
    "image_processor_type": "SiglipImageProcessor",
    "image_std": [
        0.5,
        0.5,
        0.5
    ],
    "processor_class": "SiglipProcessor",
    "resample": 3,
    "rescale_factor": 0.00392156862745098,
    "size": {
        "height": 384,
        "width": 384
    }
}

qwen2vl_processor_config = {
    "min_pixels": 3136,
    "max_pixels": 12845056,
    "patch_size": 14,
    "temporal_patch_size": 2,
    "merge_size": 2,
    "image_mean": [
        0.48145466,
        0.4578275,
        0.40821073
    ],
    "image_std": [
        0.26862954,
        0.26130258,
        0.27577711
    ],
    "image_processor_type": "Qwen2VLImageProcessor",
    "processor_class": "Qwen2VLProcessor"
}

class ValleyProcessor(ProcessorMixin):
    attributes = ["tokenizer"]
    optional_attributes = [
        "max_pixels", 
        "min_pixels", 
        "anyres", 
        "only_crop_single_image", 
        "grid_pinpoints", 
        "use_special_start_end_token",
    ]
    tokenizer_class = "AutoTokenizer"

    def __init__(self, tokenizer=None, **kwargs):
        super().__init__(tokenizer, **kwargs)
        self.black_img = BLACK_IMG_ENV
        self.siglip_image_processor = SiglipImageProcessor.from_dict(siglip_processor_config)
        self.qwen2vl_image_processor = Qwen2VLImageProcessor.from_dict(
            qwen2vl_processor_config, 
        )
        
        self.anyres = kwargs.get("anyres", True)
        self.grid_pinpoints = kwargs.get("grid_pinpoints", "(1x1),...,(3x3)")
        self.only_crop_single_image = kwargs.get("only_crop_single_image", True)
        self.use_special_start_end_token = kwargs.get("use_special_start_end_token", True)
        self.only_navit = kwargs.get("only_navit", False)

    def preprocess_images_siglip(self, images) -> torch.FloatTensor:
        if isinstance(images[0], str):
            images_pil = [Image.open(img).convert("RGB") for img in images]
        elif isinstance(images[0], Image.Image):
            images_pil = [img.convert("RGB") for img in images]
        elif isinstance(images[0], bytes):
            images_pil = [Image.open(io.BytesIO(img)).convert("RGB") for img in images]
        else:
            raise ValueError("unsupported type")

        processed_images = []
        have_multi_images = len(images_pil) > 1
        for img in images_pil:
            if self.anyres:
                if not self.only_crop_single_image or not have_multi_images:
                    image = process_anyres_image(img, self.siglip_image_processor, self.grid_pinpoints)
                else:
                    image = [self.siglip_image_processor(img, return_tensors="pt")["pixel_values"][0]]
            else:
                image = self.siglip_image_processor(img, return_tensors="pt")["pixel_values"][0]
            
            processed_images.append(image)

        if not self.anyres:
            return torch.stack(processed_images, dim=0)
        else:
            return [torch.stack(img, dim=0) for img in processed_images]
    
    def preprocess_images_qwen2vl(self, images) -> dict:
        if isinstance(images[0], str):
            images_pil = [Image.open(img).convert("RGB") for img in images]
        elif isinstance(images[0], Image.Image):
            images_pil = [img.convert("RGB") for img in images]
        elif isinstance(images[0], bytes):
            images_pil = [Image.open(io.BytesIO(img)).convert("RGB") for img in images]
        else:
            raise ValueError("unsupported type")

        image_sizes = [[x.size for x in images_pil]]
        data_dict_qwen2vl = self.qwen2vl_image_processor(
            [fetch_image({"image": img}) for img in images_pil], 
            return_tensors="pt"
        )

        data_dict_qwen2vl["image_sizes"] = image_sizes

        return data_dict_qwen2vl

    def preprocess_multimodal(self, conversations):
        for sentence in conversations:
            if sentence["role"] == "system":
                continue
            segs = re.split(DEFAULT_IMAGE_TOKEN, sentence["content"])
            if self.use_special_start_end_token:
                sentence["content"] = (DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN).join(segs)
            else:
                sentence["content"] = DEFAULT_IMAGE_TOKEN.join(segs)

        return conversations

    def preprocess_qwen2(
        self,
        conversations,
        tokenizer: PreTrainedTokenizer,
        has_image: bool = False,
        inference: bool = False,
        only_mask_system: bool = False,
    ) -> dict:
        conv = types.SimpleNamespace(
            system="You are a helpful assistant.",
            roles=("user", "assistant"),
            version="qwen2",
            offset=0,
            sep="<|im_start|>",
            sep2="<|im_end|>\n",
        )

        # Check system prompt
        assert conversations[0]["role"] == "system"
        if conversations[0]["content"] == None:
            conversations[0]["content"] = conv.system # use default system prompt
        
        # Check conversation sequence
        for j, sentence in enumerate(conversations[1:]):
            role = sentence["role"]
            assert role == conv.roles[j % 2], "The conversation sequence is incorrect."
        
        conversation_str = tokenizer.apply_chat_template(conversations, tokenize=False, add_generation_prompt=inference)
        
        # Mask targets
        rounds = conversation_str.split(conv.sep2)
        input_ids_ = torch.tensor([], dtype=torch.int64)
        targets_ = torch.tensor([], dtype=torch.int64)
        for i, rou in enumerate(rounds):
            if rou == "":
                continue
            if (not inference) or (i < (len(rounds) - 1)):
                rou += conv.sep2
            if has_image:
                cur_input_ids_ = self.tokenizer_image_token(rou, tokenizer, return_tensors='pt')
                input_ids_ = torch.cat([input_ids_, cur_input_ids_], dim=0)
                if only_mask_system:
                    mask_len = len(self.tokenizer_image_token(re.sub(rf'{conv.roles[0]}\n[\s\S]*', f'{conv.roles[0]}:', rou),
                                                        tokenizer))
                else:
                    mask_len = len(self.tokenizer_image_token(re.sub(rf'{conv.roles[1]}\n[\s\S]*', f'{conv.roles[1]}:', rou),
                                                        tokenizer))
                targets_ = torch.cat([targets_, torch.tensor([-100] * mask_len), cur_input_ids_[mask_len:]], dim=0)
            else:
                cur_input_ids_ = tokenizer(rou, return_tensors='pt')["input_ids"][0, :]
                input_ids_ = torch.cat([input_ids_, cur_input_ids_], dim=0)
                mask_len = len(tokenizer(re.sub(rf'{conv.roles[1]}\n[\s\S]*', rf'{conv.roles[1]}:', rou))["input_ids"][:])
                targets_ = torch.cat([targets_, torch.tensor([-100] * mask_len), cur_input_ids_[mask_len:]], dim=0)
        
        return {"input_ids": input_ids_, "labels": targets_}


    def tokenizer_image_token(
        self,
        prompt,
        tokenizer,
        image_token_index=IMAGE_TOKEN_INDEX,
        return_tensors=None,
    ):
        def split_with_token(string, token):
            result = string.split(token)
            for i in range(len(result) - 1):
                result.insert(i * 2 + 1, token)
            return result

        if len(prompt) > SEQ_MAX_LEN:
            raise ValueError("sequence is too long !!!")

        prompt_chunks = split_with_token(prompt, DEFAULT_IMAGE_TOKEN)
        input_ids, offset = ([tokenizer.bos_token_id], 1) if getattr(tokenizer,'bos_token',None) else ([], 0)
        token2index = {DEFAULT_IMAGE_TOKEN: image_token_index}
        for chunk in prompt_chunks:
            if chunk in token2index:
                input_ids.append(token2index[chunk])
            else:
                chunk_ids = tokenizer(chunk).input_ids
                if chunk_ids[0] != getattr(tokenizer,'bos_token_id', None):
                    offset = 0
                input_ids.extend(chunk_ids[offset:])

        if return_tensors is not None:
            if return_tensors == "pt":
                return torch.tensor(input_ids, dtype=torch.long)
            raise ValueError(f"Unsupported tensor type: {return_tensors}")
        return input_ids


    def __call__(self, messages, inference=True, **kwargs) -> BatchFeature:
        max_pixels=kwargs.get("max_pixels", self.max_pixels)
        min_pixels=kwargs.get("min_pixels", self.min_pixels)
        print(f"max_pixels: {max_pixels}, min_pixels: {min_pixels}")
        if max_pixels is not None:
            self.qwen2vl_image_processor.max_pixels = max_pixels
        if min_pixels is not None:
            self.qwen2vl_image_processor.min_pixels = min_pixels

        # Deal with images
        if "images" not in messages or not messages["images"] or not messages["images"][0]:
            images = [self.black_img]
        elif type(messages["images"]) == str:
            images = [messages["images"]]
        else:
            images = messages["images"][:16] # support 16 images

        # Deal with conversations
        conversations = messages["conversations"]
        if conversations[0]["role"] != "system":
            conversations = [{"role":"system", "content": None}] + conversations  # dummy system prompt
        
        # Insert special token `<image>`
        assert conversations[1]["role"] == "user"
        if images and "<image>" not in conversations[1]["content"]:
            image_token = " ".join(["<image>"] * len(images))
            conversations[1]["content"] = f"{image_token}\n{conversations[1]['content']}"
        
        # The last message should be assistant if inference=True
        if inference:
            assert conversations[-1]["role"] == "user", "the last message should be assistant if inference=True"
        
        # Image preprocess
        if self.only_navit:
            precessed_images_siglip = None
        else:
            precessed_images_siglip = self.preprocess_images_siglip(images)
        processed_data_dict_qwen2vl = self.preprocess_images_qwen2vl(images)
        source = self.preprocess_multimodal(conversations)
        data_dict = self.preprocess_qwen2(source, self.tokenizer, has_image=True, only_mask_system=False, inference=inference)
        
        # Construct batch data
        data_dict["input_ids"] = data_dict["input_ids"].unsqueeze(0) # batch_size = 1
        data_dict["labels"] = data_dict["labels"].unsqueeze(0)
        data_dict["images"] = [precessed_images_siglip]
        
        return BatchFeature(data={**data_dict, **processed_data_dict_qwen2vl})

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)


    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)