File size: 6,197 Bytes
0d9a24b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import torch
import torch.nn as nn
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VisionTransformerPretrainedModel
from transformers import PretrainedConfig
siglip_config = PretrainedConfig.from_dict(
{
"attention_dropout": 0.0,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 384,
"intermediate_size": 4304,
"layer_norm_eps": 1e-06,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 27,
"patch_size": 14,
}
)
qwen2vl_vit_config = PretrainedConfig.from_dict(
{
"depth": 32,
"embed_dim": 1280,
"hidden_act": "quick_gelu",
"hidden_size": 3584,
"in_channels": 3,
"in_chans": 3,
"mlp_ratio": 4,
"model_type": "qwen2_vl",
"num_heads": 16,
"patch_size": 14,
"spatial_merge_size": 2,
"spatial_patch_size": 14,
"temporal_patch_size": 2,
"_attn_implementation": "flash_attention_2",
"_attn_implementation_internal": "flash_attention_2"
}
)
def build_vision_tower(vision_tower_cfg, **kwargs):
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
if "siglip-so400m-patch14-384" in vision_tower:
# Eagle
if getattr(vision_tower_cfg, "eagle_vision_tower", None) is not None:
if getattr(vision_tower_cfg, "_vit_attn_implementation", None) is not None:
qwen2vl_vit_config._attn_implementation = vision_tower_cfg._vit_attn_implementation
qwen2vl_vit_config._attn_implementation_internal = vision_tower_cfg._vit_attn_implementation
qwen2vl_vision_tower = Qwen2VisionTransformerPretrainedModel._from_config(qwen2vl_vit_config)
if getattr(vision_tower_cfg, "navit_merger_hidden_dim", None) is not None:
del qwen2vl_vision_tower.merger
qwen2vl_vision_tower.merger = CustomPatchMerger(
vision_tower_cfg.hidden_size,
context_dim=1280,
hidden_dim=getattr(vision_tower_cfg, "navit_merger_hidden_dim", None)
) # random initialize
qwen2vl_vision_tower.requires_grad_(False)
# If only use navit, delete siglip_vision_tower
if getattr(vision_tower_cfg, "only_navit", False):
siglip_vision_tower = None
else:
siglip_vision_tower = SigLipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
return siglip_vision_tower, qwen2vl_vision_tower
# Non-Eagle
else:
siglip_vision_tower = SigLipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
return siglip_vision_tower
else:
raise ValueError(f"Unknown vision tower: {vision_tower}")
class SigLipVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False, cache_dir="./cache_dir"):
super().__init__()
self.is_loaded = False
self.image_tower_name = vision_tower
self.select_layer = args.mm_vision_select_layer
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
self.cache_dir = cache_dir
if not delay_load:
self.load_model()
else:
from transformers import SiglipVisionModel
self.cfg_only = siglip_config
self.vision_tower = SiglipVisionModel._from_config(siglip_config) # dummy-load
def load_model(self):
from transformers import SiglipVisionModel
self.vision_tower = SiglipVisionModel._from_config(siglip_config)
self.vision_tower.requires_grad_(False)
self.is_loaded = True
def feature_select(self, image_forward_outs):
assert self.select_feature == "cls_patch"
image_features = torch.cat([image_forward_outs[:, :1, :], image_forward_outs], dim=1)
return image_features
def forward(self, images):
if type(images) is list:
image_features = []
for image in images:
image_forward_out = self.vision_tower(
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
output_hidden_states=True,
return_dict=True,
)
image_feature = self.feature_select(image_forward_out.last_hidden_state).to(image.dtype)
image_features.append(image_feature)
else:
image_forward_outs = self.vision_tower(
images.to(device=self.device, dtype=self.dtype),
output_hidden_states=True,
return_dict=True,
)
image_features = self.feature_select(image_forward_outs.last_hidden_state).to(images.dtype)
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return self.vision_tower.dtype
@property
def device(self):
return self.vision_tower.device
@property
def config(self):
if self.is_loaded:
return self.vision_tower.config
else:
return self.cfg_only
@property
def hidden_size(self):
return self.config.hidden_size
@property
def num_patches(self):
return (self.config.image_size // self.config.patch_size) ** 2
class CustomPatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, hidden_dim: int, spatial_merge_size: int = 2) -> None:
super().__init__()
self.input_dim = context_dim * (spatial_merge_size**2)
self.ln_q = nn.LayerNorm(context_dim, eps=1e-6)
self.mlp = nn.Sequential(
nn.Linear(self.input_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, dim),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.mlp(self.ln_q(x).view(-1, self.input_dim))
return x |