File size: 6,118 Bytes
0d9a24b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import math
import torch
import torch.nn as nn

def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, 'mm_projector_type', 'linear')

    if projector_type == 'conv_adapter':
        return ConvAdapter(config.mm_hidden_size, config.hidden_size, getattr(config, "mlp_hidden_dim", None))
    elif projector_type == 'mlp_pixel_shuffle':
        return MlpPixelShuffle(config.mm_hidden_size, config.hidden_size,
                               config.pixelshuffle_downsample_ratio, getattr(config, "mlp_hidden_dim", None))
    elif projector_type == 'ovis_conv_adapter':
        return OvisConvAdapter(config.mm_hidden_size, config.hidden_size, getattr(config, "mlp_hidden_dim", 32000),
                               getattr(config, "tokenize_function", "softmax"))
    raise ValueError(f'Unknown projector type: {projector_type}')


class ConvAdapter(nn.Module):
    def __init__(self, dim_in, dim_out, mlp_hidden_dim=None):
        super().__init__()
        self.mm_projector_type = 'conv_adapter'
        if mlp_hidden_dim is None:
            self.mlp = nn.Sequential(
                nn.Linear(dim_in, dim_out),
                nn.GELU(),
                nn.Linear(dim_out, dim_out)
            )
        else:
            self.mlp = nn.Sequential(
                nn.Linear(dim_in, mlp_hidden_dim),
                nn.GELU(),
                nn.Linear(mlp_hidden_dim, dim_out)
            )
        self.conv = nn.Conv2d(dim_out, dim_out, kernel_size=(3, 3), stride=(2, 2), padding=1)

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): image features
                shape (F, v, D)
        Returns:
            shape (F, n, D) where n is token_num that has been reduced
        """
        x = self.mlp(x)

        f, v, d = x.shape
        s = int(math.sqrt(v - 1))
        x = x[:, 1:, :]  # remove cls_token
        x = x.reshape(f, s, s, d).permute([0, 3, 1, 2])
        x = self.conv(x)
        x = x.permute([0, 2, 3, 1]).reshape(f, -1, d)
        return x


class MlpPixelShuffle(nn.Module):
    def __init__(self, dim_in, dim_out, pixelshuffle_downsample_ratio, mlp_hidden_dim=None):
        super().__init__()
        self.mm_projector_type = 'mlp_pixel_shuffle'
        if mlp_hidden_dim is None:
            self.mlp = nn.Sequential(
                nn.Linear(int(dim_in * (pixelshuffle_downsample_ratio ** 2)), dim_out),
                nn.GELU(),
                nn.Linear(dim_out, dim_out)
            )
        else:
            self.mlp = nn.Sequential(
                nn.Linear(int(dim_in * (pixelshuffle_downsample_ratio ** 2)), mlp_hidden_dim),
                nn.GELU(),
                nn.Linear(mlp_hidden_dim, dim_out)
            )
        self.scale_factor = pixelshuffle_downsample_ratio

    def pixel_shuffle(self, x, scale_factor=2):
        # change scale_factor from float to int

        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H / scale, C * scale
        x = x.view(n, w, int(h / scale_factor), int(c * scale_factor))
        # N, W, H / scale, C * scale --> N, H / scale, W, C * scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H / scale, W, C * scale --> N, H / scale, W / scale, C * (scale ** 2)
        x = x.view(n, int(h / scale_factor), int(w / scale_factor),
                   int(c * (scale_factor * scale_factor)))

        x = x.permute(0, 2, 1, 3).contiguous()

        return x

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): image features
                shape (F, v, D)
        Returns:
            shape (F, n, D) where n is token_num that has been reduced
        """
        x = x[:, 1:, :]  # remove cls_token
        h = w = int(x.shape[1] ** 0.5)
        x = x.view(x.shape[0], h, w, -1)
        x = self.pixel_shuffle(x, self.scale_factor)
        x = self.mlp(x)
        x = x.view(x.shape[0],-1,x.shape[-1])
        return x


class OvisConvAdapter(nn.Module):
    def __init__(self, dim_in, dim_out, vocab_size, tokenize_function="softmax"):
        super().__init__()
        self.mm_projector_type = 'ovis_conv_adapter'
        self.conv = nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), padding=1)
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(dim_in, vocab_size, bias=False),
            torch.nn.LayerNorm(vocab_size)
        )
        self.embedding = torch.nn.Embedding(vocab_size, dim_out)
        self.tokenize_function = tokenize_function

    def tokenize(self, logits):
        def st_argmax(y_soft, dim):  # straight-through softmax
            index = y_soft.max(dim, keepdim=True)[1]
            y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
            ret = y_hard - y_soft.detach() + y_soft
            return ret

        if self.tokenize_function == 'softmax':
            tokens = torch.nn.functional.softmax(logits, dim=-1)
        elif self.tokenize_function == 'gumbel_argmax':
            tokens = torch.nn.functional.gumbel_softmax(logits, tau=self.config.tau, hard=True)
        elif self.tokenize_function == 'st_argmax':
            tokens = st_argmax(logits, dim=-1)
        else:
            raise ValueError(
                'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax,'
                f' but got {self.config.tokenize_function}'
            )
        return tokens

    def forward(self, x):
        """
        Args:
            x (torch.Tensor): image features
                shape (F, v, D)
        Returns:
            shape (F, n, D) where n is token_num that has been reduced
        """
        # conv
        f, v, d = x.shape
        s = int(math.sqrt(v - 1))
        x = x[:, 1:, :]  # remove cls_token
        x = x.reshape(f, s, s, d).permute([0, 3, 1, 2])
        x = self.conv(x)
        x = x.permute([0, 2, 3, 1]).reshape(f, -1, d)

        # tokenize
        logits = self.mlp(x)
        visual_tokens = self.tokenize(logits)

        # get embeddings
        out = torch.matmul(visual_tokens, self.embedding.weight)

        return out