File size: 9,985 Bytes
7e9d312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
from PIL import Image
from io import BytesIO
import base64
import math
import ast
import re
import torch
from transformers import StoppingCriteria

IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
GANDALF_TOKEN_INDEX = -300
DEFAULT_PAD_TOKEN = "[PAD]"
DEFAULT_EOS_TOKEN = "</s>"
DEFAULT_BOS_TOKEN = "</s>"
DEFAULT_UNK_TOKEN = "<unk>"
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
DEFAULT_VIDEO_TOKEN = "<video>"
DEFAULT_VIDEO_FRAME_TOKEN = "<vi_frame>"
DEFAULT_VI_START_TOKEN = "<vi_start>"
DEFAULT_VI_END_TOKEN = "<vi_end>"
DEFAULT_EOC_TOKEN = "<eoc>"
COR_START_TOKEN = "<cor>"
COR_END_TOKEN = "<\cor>"
SEQ_MAX_LEN = 50000
BLACK_IMG_ENV = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x03\x00\x00\x00\x03\x08\x02\x00\x00\x00\xd9J"\xe8\x00\x00\x00\x12IDAT\x08\x1dcd\x80\x01F\x06\x18`d\x80\x01\x00\x00Z\x00\x04we\x03N\x00\x00\x00\x00IEND\xaeB`\x82'


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (tuple): The size of the input image in the format (width, height).
        grid_pinpoints (str): A string representation of a list of possible resolutions.
        patch_size (int): The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [
            (i, j)
            for i in range(range_start[0], range_end[0] + 1)
            for j in range(range_start[1], range_end[1] + 1)
        ]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    width, height = select_best_resolution(image_size, possible_resolutions)
    return width // patch_size, height // patch_size

def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format
                                    [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for width, height in possible_resolutions:
        # Calculate the downscaled size to keep the aspect ratio
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)

        # Calculate effective and wasted resolutions
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or \
                (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of the image (height, width).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    # Compute aspect ratios
    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    # Determine padding size and direction
    if original_aspect_ratio > current_aspect_ratio:
        # Padding was added to the height
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding: current_height - padding, :]
    else:
        # Padding was added to the width
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding: current_width - padding]

    return unpadded_tensor


def process_anyres_image(image, processor, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    # Convert grid_pinpoints from string to list
    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        try:
            patch_size = processor.size["height"]
        except Exception:
            patch_size = processor.size["shortest_edge"]
        assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [
            (i, j)
            for i in range(range_start[0], range_end[0] + 1)
            for j in range(range_start[1], range_end[1] + 1)
        ]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]

    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions)
    image_padded = resize_and_pad_image(image, best_resolution)

    patches = divide_to_patches(image_padded, processor.size["height"])

    # FIXME: this seems to be a bug that it resizes instead of pad.
    # but to keep it consistent with previous, i will keep it as it is
    # TODO: uncomment below to ablate with the padding
    if isinstance(processor.size, dict):
        shortest_edge = processor.size["height"]
    else:
        shortest_edge = min(processor.size)
    image_original_resize = image.resize((shortest_edge, shortest_edge))
    # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))

    image_patches = [image_original_resize] + patches
    image_patches = [
        processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0]
        for image_patch in image_patches
    ]
    # return torch.stack(image_patches, dim=0)
    return image_patches

def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    # Determine which dimension (width or height) to fill
    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        # Width will be filled completely
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        # Height will be filled completely
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    # Create a new image with the target size and paste the resized image onto it
    new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image

def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches