File size: 6,197 Bytes
7e9d312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56a47d6
 
 
 
7e9d312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch
import torch.nn as nn
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VisionTransformerPretrainedModel
from transformers import PretrainedConfig

siglip_config = PretrainedConfig.from_dict(
    {
        "attention_dropout": 0.0,
        "hidden_act": "gelu_pytorch_tanh",
        "hidden_size": 1152,
        "image_size": 384,
        "intermediate_size": 4304,
        "layer_norm_eps": 1e-06,
        "model_type": "siglip_vision_model",
        "num_attention_heads": 16,
        "num_channels": 3,
        "num_hidden_layers": 27,
        "patch_size": 14,
    }
)

qwen2vl_vit_config = PretrainedConfig.from_dict(
    {
        "depth": 32,
        "embed_dim": 1280,
        "hidden_act": "quick_gelu",
        "hidden_size": 3584,
        "in_channels": 3,
        "in_chans": 3,
        "mlp_ratio": 4,
        "model_type": "qwen2_vl",
        "num_heads": 16,
        "patch_size": 14,
        "spatial_merge_size": 2,
        "spatial_patch_size": 14,
        "temporal_patch_size": 2,
        "_attn_implementation": "flash_attention_2",
        "_attn_implementation_internal": "flash_attention_2"
    }
)

def build_vision_tower(vision_tower_cfg, **kwargs):
    vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
    if "siglip-so400m-patch14-384" in vision_tower:
        # Eagle
        if getattr(vision_tower_cfg, "eagle_vision_tower", None) is not None:
            if getattr(vision_tower_cfg, "_vit_attn_implementation", None) is not None:
                qwen2vl_vit_config._attn_implementation = vision_tower_cfg._vit_attn_implementation
                qwen2vl_vit_config._attn_implementation_internal = vision_tower_cfg._vit_attn_implementation
            
            qwen2vl_vision_tower = Qwen2VisionTransformerPretrainedModel._from_config(qwen2vl_vit_config)
            
            if getattr(vision_tower_cfg, "navit_merger_hidden_dim", None) is not None:
                del qwen2vl_vision_tower.merger
                qwen2vl_vision_tower.merger = CustomPatchMerger(
                    vision_tower_cfg.hidden_size, 
                    context_dim=1280, 
                    hidden_dim=getattr(vision_tower_cfg, "navit_merger_hidden_dim", None)
                ) # random initialize
            qwen2vl_vision_tower.requires_grad_(False)
            
            # If only use navit, delete siglip_vision_tower
            if getattr(vision_tower_cfg, "only_navit", False):
                siglip_vision_tower = None
            else:
                siglip_vision_tower = SigLipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
            
            return siglip_vision_tower, qwen2vl_vision_tower
        # Non-Eagle
        else:
            siglip_vision_tower = SigLipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
            return siglip_vision_tower
    else:
        raise ValueError(f"Unknown vision tower: {vision_tower}")

class SigLipVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False, cache_dir="./cache_dir"):
        super().__init__()
        self.is_loaded = False
        self.image_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
        self.cache_dir = cache_dir

        if not delay_load:
            self.load_model()
        else:
            from transformers import SiglipVisionModel
            self.cfg_only = siglip_config
            self.vision_tower = SiglipVisionModel._from_config(siglip_config)  # dummy-load

    def load_model(self):
        from transformers import SiglipVisionModel
        self.vision_tower = SiglipVisionModel._from_config(siglip_config)
        self.vision_tower.requires_grad_(False)
        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        assert self.select_feature == "cls_patch"
        image_features = torch.cat([image_forward_outs[:, :1, :], image_forward_outs], dim=1)
        return image_features

    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True,
                    return_dict=True,
                )
                image_feature = self.feature_select(image_forward_out.last_hidden_state).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True,
                return_dict=True,
            )
            image_features = self.feature_select(image_forward_outs.last_hidden_state).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class CustomPatchMerger(nn.Module):
    def __init__(self, dim: int, context_dim: int, hidden_dim: int, spatial_merge_size: int = 2) -> None:
        super().__init__()
        self.input_dim = context_dim * (spatial_merge_size**2)
        self.ln_q = nn.LayerNorm(context_dim, eps=1e-6)
        self.mlp = nn.Sequential(
            nn.Linear(self.input_dim, hidden_dim),
            nn.GELU(),
            nn.Linear(hidden_dim, dim),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.mlp(self.ln_q(x).view(-1, self.input_dim))
        return x