Weiyun1025 commited on
Commit
4274d3f
·
verified ·
1 Parent(s): 24c88fa

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ examples/image2.jpg filter=lfs diff=lfs merge=lfs -text
37
+ examples/red-panda.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,703 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-text-to-text
4
+ library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternVL3-9B-Instruct
7
+ base_model_relation: finetune
8
+ datasets:
9
+ - OpenGVLab/MMPR-v1.2
10
+ language:
11
+ - multilingual
12
+ tags:
13
+ - internvl
14
+ - custom_code
15
+ ---
16
+
17
+ # InternVL3-9B
18
+
19
+ [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479)
20
+
21
+ [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/)
22
+
23
+ <div align="center">
24
+ <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png">
25
+ </div>
26
+
27
+ ## Introduction
28
+
29
+ ***This is the pretrained version of InternVL3-9B, which has undergone native multimodal pre-trainin but has not undergone post-training (i.e., SFT and MPO). If you're unsure which version to use, please use the [InternVL3-9B](https://huggingface.co/OpenGVLab/InternVL3-9B) version.***
30
+
31
+ We introduce InternVL3, an advanced multimodal large language model (MLLM) series that demonstrates superior overall performance.
32
+ Compared to InternVL 2.5, InternVL3 exhibits superior multimodal perception and reasoning capabilities, while further extending its multimodal capabilities to encompass tool usage, GUI agents, industrial image analysis, 3D vision perception, and more.
33
+ Additionally, we compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3. Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
34
+
35
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/overall.png)
36
+
37
+ ## InternVL3 Family
38
+
39
+ In the following table, we provide an overview of the InternVL3 series.
40
+
41
+ | Model Name | Vision Part | Language Part | HF Link |
42
+ | :-----------: | :-------------------------------------------------------------------------------------: | :----------------------------------------------------------------------------: | :------------------------------------------------------: |
43
+ | InternVL3-1B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-1B) |
44
+ | InternVL3-2B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-2B) |
45
+ | InternVL3-8B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-8B) |
46
+ | InternVL3-9B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [internlm3-8b-instruct](https://huggingface.co/internlm/internlm3-8b-instruct) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-9B) |
47
+ | InternVL3-14B | [InternViT-300M-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-300M-448px-V2_5) | [Qwen2.5-14B](https://huggingface.co/Qwen/Qwen2.5-14B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-14B) |
48
+ | InternVL3-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-38B) |
49
+ | InternVL3-78B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | [🤗 link](https://huggingface.co/OpenGVLab/InternVL3-78B) |
50
+
51
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/overall-table.png)
52
+
53
+ ## Model Architecture
54
+
55
+ As shown in the following figure, [InternVL3](https://internvl.github.io/blog/2025-04-11-InternVL-3/) retains the same model architecture as [InternVL 2.5](https://internvl.github.io/blog/2024-12-05-InternVL-2.5/) and its predecessors, InternVL 1.5 and 2.0, following the "ViT-MLP-LLM" paradigm. In this new version, we integrate a newly incrementally pre-trained InternViT with various pre-trained LLMs, including InternLM 3 and Qwen 2.5, using a randomly initialized MLP projector.
56
+
57
+
58
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/BiiyXN6NOk0p-3rl3ueyL.png)
59
+
60
+ As in the previous version, we applied a pixel unshuffle operation, reducing the number of visual tokens to one-quarter of the original. Besides, we adopted a similar dynamic resolution strategy as InternVL 1.5, dividing images into tiles of 448×448 pixels. The key difference, starting from InternVL 2.0, is that we additionally introduced support for multi-image and video data.
61
+
62
+ Notably, in InternVL3, we integrate the [Variable Visual Position Encoding (V2PE)](https://arxiv.org/abs/2412.09616), which utilizes smaller, more flexible position increments for visual tokens. Benefiting from V2PE, InternVL3 exhibits better long context understanding capabilities compared to its predecessors.
63
+
64
+ ## Training Strategy
65
+
66
+ ### Native Multimodal Pre-Training
67
+
68
+ We propose a [Native Multimodal Pre-Training](https://huggingface.co/papers/2504.10479) approach that consolidates language and vision learning into a single pre-training stage.
69
+ In contrast to standard paradigms that first train a language-only model and subsequently adapt it to handle additional modalities, our method interleaves multimodal data (e.g., image-text, video-text, or image-text interleaved sequences) with large-scale textual corpora. This unified training scheme allows the model to learn both linguistic and multimodal representations simultaneously, ultimately enhancing its capability to handle vision-language tasks without the need for separate alignment or bridging modules.
70
+ Please see [our paper](https://huggingface.co/papers/2504.10479) for more details.
71
+
72
+ ### Supervised Fine-Tuning
73
+
74
+ In this phase, the techniques of random JPEG compression, square loss re-weighting, and multimodal data packing proposed in [InternVL2.5](https://arxiv.org/abs/2412.05271) are also employed in the InternVL3 series.
75
+ The main advancement of the SFT phase in InternVL3 compared to InternVL2.5 lies in the use of higher-quality and more diverse training data.
76
+ Specifically, we further extend training samples for tool use, 3D scene understanding, GUI operations, long context tasks, video understanding, scientific diagrams, creative writing, and multimodal reasoning.
77
+
78
+ ### Mixed Preference Optimization
79
+
80
+ During Pre-training and SFT, the model is trained to predict the next token conditioned on previous ground-truth tokens.
81
+ However, during inference, the model predicts each token based on its own prior outputs.
82
+ This discrepancy between ground-truth tokens and model-predicted tokens introduces a distribution shift, which can impair the model’s Chain-of-Thought (CoT) reasoning capabilities.
83
+ To mitigate this issue, we employ [MPO](https://arxiv.org/abs/2411.10442), which introduces additional supervision from both positive and negative samples to align the model response distribution with the ground-truth distribution, thereby improving reasoning performance.
84
+ Specifically, the training objective of MPO is a combination of
85
+ preference loss \\(\mathcal{L}_{\text{p}}\\),
86
+ quality loss \\(\mathcal{L}_{\text{q}}\\),
87
+ and generation loss \\(\mathcal{L}_{\text{g}}\\),
88
+ which can be formulated as follows:
89
+
90
+
91
+ $$
92
+ \mathcal{L}=w_{p}\cdot\mathcal{L}_{\text{p}} + w_{q}\cdot\mathcal{L}_{\text{q}} + w_{g}\cdot\mathcal{L}_{\text{g}},
93
+ $$
94
+
95
+
96
+ where \\(w_{*}\\) represents the weight assigned to each loss component. Please see [our paper](https://arxiv.org/abs/2411.10442) for more details about MPO.
97
+
98
+
99
+ ### Test-Time Scaling
100
+
101
+ Test-Time Scaling has been shown to be an effective method to enhance the reasoning abilities of LLMs and MLLMs.
102
+ In this work, we use the Best-of-N evaluation strategy and employ [VisualPRM-8B](https://huggingface.co/OpenGVLab/VisualPRM-8B) as the critic model to select the best response for reasoning and mathematics evaluation.
103
+
104
+ ## Evaluation on Multimodal Capability
105
+
106
+ ### Multimodal Reasoning and Mathematics
107
+
108
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/reasoning.png)
109
+
110
+ ### OCR, Chart, and Document Understanding
111
+
112
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ocr.png)
113
+
114
+ ### Multi-Image & Real-World Comprehension
115
+
116
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/multi-images.png)
117
+
118
+ ### Comprehensive Multimodal & Hallucination Evaluation
119
+
120
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/comprehensive.png)
121
+
122
+ ### Visual Grounding
123
+
124
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/grounding.png)
125
+
126
+ ### Multimodal Multilingual Understanding
127
+
128
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/multilingual.png)
129
+
130
+ ### Video Understanding
131
+
132
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/video.png)
133
+
134
+ ### GUI Grounding
135
+
136
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/gui.png)
137
+
138
+ ### Spatial Reasoning
139
+
140
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/vsi.png)
141
+
142
+ ## Evaluation on Language Capability
143
+
144
+ We compare InternVL3 with Qwen2.5 Chat models, whose corresponding pre-trained base models are employed as the initialization of the langauge component in InternVL3.
145
+ Benefitting from Native Multimodal Pre-Training, the InternVL3 series achieves even better overall text performance than the Qwen2.5 series.
146
+ Please note that the evaluation scores of Qwen2.5 series may differ from those officially reported, as we have adopted the prompt versions provided in the table across all datasets for OpenCompass evaluation.
147
+
148
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/text.png)
149
+
150
+ ## Ablation Study
151
+
152
+ ### Native Multimodal Pre-Training
153
+
154
+ We conduct experiments on the InternVL2-8B model while keeping its architecture, initialization parameters, and training data entirely unchanged. Traditionally, InternVL2-8B employs a training pipeline that begins with an MLP warmup phase for feature alignment followed by an Instruction Tuning stage. In our experiments, we substitute the conventional MLP warmup phase with a native multimodal pre-training process. This modification isolates the contribution of native multimodal pre-training to the overall multimodal capability of the model.
155
+
156
+ The evaluation results in the Figure below shows that the model with native multimodal pre-training exhibits performance on most benchmarks that is comparable to the fully multi-stage-trained InternVL2-8B baseline. Furthermore, when followed by instruction tuning on higher-quality data, the model demonstrates further performance gains across evaluated multimodal tasks. These findings underscore the efficiency of native multimodal pre-training in imparting powerful multimodal capabilities to MLLMs.
157
+
158
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-native.png)
159
+
160
+ ### Mixed Preference Optimization
161
+
162
+ As shown in the table below, models fine-tuned with MPO demonstrate superior reasoning performance across seven multimodal reasoning benchmarks compared to their counterparts without MPO. Specifically, InternVL3-78B and InternVL3-38B outperform their counterparts by 4.1 and 4.5 points, respectively. Notably, the training data used for MPO is a subset of that used for SFT, indicating that the performance improvements primarily stem from the training algorithm rather than the training data.
163
+
164
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-mpo.png)
165
+
166
+ ### Variable Visual Position Encoding
167
+
168
+ As reported in the table below, the introduction of V2PE leads to significant performance gains across most evaluation metrics. In addition, our ablation studies—by varying the positional increment \\( \delta \\)—reveal that even for tasks primarily involving conventional contexts, relatively small \\( \delta \\) values can achieve optimal performance. These findings provide important insights for future efforts aimed at refining position encoding strategies for visual tokens in MLLMs.
169
+
170
+ ![image/png](https://huggingface.co/datasets/Weiyun1025/InternVL-Performance/resolve/main/internvl3/ablation-v2pe.png)
171
+
172
+ ## Quick Start
173
+
174
+ We provide an example code to run `InternVL3-9B` using `transformers`.
175
+
176
+ > Please use transformers>=4.37.2 to ensure the model works normally.
177
+
178
+ ### Model Loading
179
+
180
+ #### 16-bit (bf16 / fp16)
181
+
182
+ ```python
183
+ import torch
184
+ from transformers import AutoTokenizer, AutoModel
185
+ path = "OpenGVLab/InternVL3-9B"
186
+ model = AutoModel.from_pretrained(
187
+ path,
188
+ torch_dtype=torch.bfloat16,
189
+ low_cpu_mem_usage=True,
190
+ use_flash_attn=True,
191
+ trust_remote_code=True).eval().cuda()
192
+ ```
193
+
194
+ #### BNB 8-bit Quantization
195
+
196
+ ```python
197
+ import torch
198
+ from transformers import AutoTokenizer, AutoModel
199
+ path = "OpenGVLab/InternVL3-9B"
200
+ model = AutoModel.from_pretrained(
201
+ path,
202
+ torch_dtype=torch.bfloat16,
203
+ load_in_8bit=True,
204
+ low_cpu_mem_usage=True,
205
+ use_flash_attn=True,
206
+ trust_remote_code=True).eval()
207
+ ```
208
+
209
+ #### Multiple GPUs
210
+
211
+ The reason for writing the code this way is to avoid errors that occur during multi-GPU inference due to tensors not being on the same device. By ensuring that the first and last layers of the large language model (LLM) are on the same device, we prevent such errors.
212
+
213
+ ```python
214
+ import math
215
+ import torch
216
+ from transformers import AutoTokenizer, AutoModel
217
+
218
+ def split_model(model_name):
219
+ device_map = {}
220
+ world_size = torch.cuda.device_count()
221
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
222
+ num_layers = config.llm_config.num_hidden_layers
223
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
224
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
225
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
226
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
227
+ layer_cnt = 0
228
+ for i, num_layer in enumerate(num_layers_per_gpu):
229
+ for j in range(num_layer):
230
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
231
+ layer_cnt += 1
232
+ device_map['vision_model'] = 0
233
+ device_map['mlp1'] = 0
234
+ device_map['language_model.model.tok_embeddings'] = 0
235
+ device_map['language_model.model.embed_tokens'] = 0
236
+ device_map['language_model.output'] = 0
237
+ device_map['language_model.model.norm'] = 0
238
+ device_map['language_model.model.rotary_emb'] = 0
239
+ device_map['language_model.lm_head'] = 0
240
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
241
+
242
+ return device_map
243
+
244
+ path = "OpenGVLab/InternVL3-9B"
245
+ device_map = split_model('InternVL3-9B')
246
+ model = AutoModel.from_pretrained(
247
+ path,
248
+ torch_dtype=torch.bfloat16,
249
+ low_cpu_mem_usage=True,
250
+ use_flash_attn=True,
251
+ trust_remote_code=True,
252
+ device_map=device_map).eval()
253
+ ```
254
+
255
+ ### Inference with Transformers
256
+
257
+ ```python
258
+ import math
259
+ import numpy as np
260
+ import torch
261
+ import torchvision.transforms as T
262
+ from decord import VideoReader, cpu
263
+ from PIL import Image
264
+ from torchvision.transforms.functional import InterpolationMode
265
+ from transformers import AutoModel, AutoTokenizer
266
+
267
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
268
+ IMAGENET_STD = (0.229, 0.224, 0.225)
269
+
270
+ def build_transform(input_size):
271
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
272
+ transform = T.Compose([
273
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
274
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
275
+ T.ToTensor(),
276
+ T.Normalize(mean=MEAN, std=STD)
277
+ ])
278
+ return transform
279
+
280
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
281
+ best_ratio_diff = float('inf')
282
+ best_ratio = (1, 1)
283
+ area = width * height
284
+ for ratio in target_ratios:
285
+ target_aspect_ratio = ratio[0] / ratio[1]
286
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
287
+ if ratio_diff < best_ratio_diff:
288
+ best_ratio_diff = ratio_diff
289
+ best_ratio = ratio
290
+ elif ratio_diff == best_ratio_diff:
291
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
292
+ best_ratio = ratio
293
+ return best_ratio
294
+
295
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
296
+ orig_width, orig_height = image.size
297
+ aspect_ratio = orig_width / orig_height
298
+
299
+ # calculate the existing image aspect ratio
300
+ target_ratios = set(
301
+ (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
302
+ i * j <= max_num and i * j >= min_num)
303
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
304
+
305
+ # find the closest aspect ratio to the target
306
+ target_aspect_ratio = find_closest_aspect_ratio(
307
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size)
308
+
309
+ # calculate the target width and height
310
+ target_width = image_size * target_aspect_ratio[0]
311
+ target_height = image_size * target_aspect_ratio[1]
312
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
313
+
314
+ # resize the image
315
+ resized_img = image.resize((target_width, target_height))
316
+ processed_images = []
317
+ for i in range(blocks):
318
+ box = (
319
+ (i % (target_width // image_size)) * image_size,
320
+ (i // (target_width // image_size)) * image_size,
321
+ ((i % (target_width // image_size)) + 1) * image_size,
322
+ ((i // (target_width // image_size)) + 1) * image_size
323
+ )
324
+ # split the image
325
+ split_img = resized_img.crop(box)
326
+ processed_images.append(split_img)
327
+ assert len(processed_images) == blocks
328
+ if use_thumbnail and len(processed_images) != 1:
329
+ thumbnail_img = image.resize((image_size, image_size))
330
+ processed_images.append(thumbnail_img)
331
+ return processed_images
332
+
333
+ def load_image(image_file, input_size=448, max_num=12):
334
+ image = Image.open(image_file).convert('RGB')
335
+ transform = build_transform(input_size=input_size)
336
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
337
+ pixel_values = [transform(image) for image in images]
338
+ pixel_values = torch.stack(pixel_values)
339
+ return pixel_values
340
+
341
+ def split_model(model_name):
342
+ device_map = {}
343
+ world_size = torch.cuda.device_count()
344
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
345
+ num_layers = config.llm_config.num_hidden_layers
346
+ # Since the first GPU will be used for ViT, treat it as half a GPU.
347
+ num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
348
+ num_layers_per_gpu = [num_layers_per_gpu] * world_size
349
+ num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
350
+ layer_cnt = 0
351
+ for i, num_layer in enumerate(num_layers_per_gpu):
352
+ for j in range(num_layer):
353
+ device_map[f'language_model.model.layers.{layer_cnt}'] = i
354
+ layer_cnt += 1
355
+ device_map['vision_model'] = 0
356
+ device_map['mlp1'] = 0
357
+ device_map['language_model.model.tok_embeddings'] = 0
358
+ device_map['language_model.model.embed_tokens'] = 0
359
+ device_map['language_model.output'] = 0
360
+ device_map['language_model.model.norm'] = 0
361
+ device_map['language_model.model.rotary_emb'] = 0
362
+ device_map['language_model.lm_head'] = 0
363
+ device_map[f'language_model.model.layers.{num_layers - 1}'] = 0
364
+
365
+ return device_map
366
+
367
+ # If you set `load_in_8bit=True`, you will need two 80GB GPUs.
368
+ # If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
369
+ path = 'OpenGVLab/InternVL3-9B'
370
+ device_map = split_model('InternVL3-9B')
371
+ model = AutoModel.from_pretrained(
372
+ path,
373
+ torch_dtype=torch.bfloat16,
374
+ load_in_8bit=False,
375
+ low_cpu_mem_usage=True,
376
+ use_flash_attn=True,
377
+ trust_remote_code=True,
378
+ device_map=device_map).eval()
379
+ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
380
+
381
+ # set the max number of tiles in `max_num`
382
+ pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
383
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
384
+
385
+ # pure-text conversation (纯文本对话)
386
+ question = 'Hello, who are you?'
387
+ response, history = model.chat(tokenizer, None, question, generation_config, history=None, return_history=True)
388
+ print(f'User: {question}\nAssistant: {response}')
389
+
390
+ question = 'Can you tell me a story?'
391
+ response, history = model.chat(tokenizer, None, question, generation_config, history=history, return_history=True)
392
+ print(f'User: {question}\nAssistant: {response}')
393
+
394
+ # single-image single-round conversation (单图单轮对话)
395
+ question = '<image>\nPlease describe the image shortly.'
396
+ response = model.chat(tokenizer, pixel_values, question, generation_config)
397
+ print(f'User: {question}\nAssistant: {response}')
398
+
399
+ # single-image multi-round conversation (单图多轮对话)
400
+ question = '<image>\nPlease describe the image in detail.'
401
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
402
+ print(f'User: {question}\nAssistant: {response}')
403
+
404
+ question = 'Please write a poem according to the image.'
405
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=history, return_history=True)
406
+ print(f'User: {question}\nAssistant: {response}')
407
+
408
+ # multi-image multi-round conversation, combined images (多图多轮对话,拼接图像)
409
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
410
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
411
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
412
+
413
+ question = '<image>\nDescribe the two images in detail.'
414
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
415
+ history=None, return_history=True)
416
+ print(f'User: {question}\nAssistant: {response}')
417
+
418
+ question = 'What are the similarities and differences between these two images.'
419
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
420
+ history=history, return_history=True)
421
+ print(f'User: {question}\nAssistant: {response}')
422
+
423
+ # multi-image multi-round conversation, separate images (多图多轮对话,独立图像)
424
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
425
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
426
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
427
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
428
+
429
+ question = 'Image-1: <image>\nImage-2: <image>\nDescribe the two images in detail.'
430
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
431
+ num_patches_list=num_patches_list,
432
+ history=None, return_history=True)
433
+ print(f'User: {question}\nAssistant: {response}')
434
+
435
+ question = 'What are the similarities and differences between these two images.'
436
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
437
+ num_patches_list=num_patches_list,
438
+ history=history, return_history=True)
439
+ print(f'User: {question}\nAssistant: {response}')
440
+
441
+ # batch inference, single image per sample (单图批处理)
442
+ pixel_values1 = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
443
+ pixel_values2 = load_image('./examples/image2.jpg', max_num=12).to(torch.bfloat16).cuda()
444
+ num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)]
445
+ pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
446
+
447
+ questions = ['<image>\nDescribe the image in detail.'] * len(num_patches_list)
448
+ responses = model.batch_chat(tokenizer, pixel_values,
449
+ num_patches_list=num_patches_list,
450
+ questions=questions,
451
+ generation_config=generation_config)
452
+ for question, response in zip(questions, responses):
453
+ print(f'User: {question}\nAssistant: {response}')
454
+
455
+ # video multi-round conversation (视频多轮对话)
456
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
457
+ if bound:
458
+ start, end = bound[0], bound[1]
459
+ else:
460
+ start, end = -100000, 100000
461
+ start_idx = max(first_idx, round(start * fps))
462
+ end_idx = min(round(end * fps), max_frame)
463
+ seg_size = float(end_idx - start_idx) / num_segments
464
+ frame_indices = np.array([
465
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
466
+ for idx in range(num_segments)
467
+ ])
468
+ return frame_indices
469
+
470
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
471
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
472
+ max_frame = len(vr) - 1
473
+ fps = float(vr.get_avg_fps())
474
+
475
+ pixel_values_list, num_patches_list = [], []
476
+ transform = build_transform(input_size=input_size)
477
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
478
+ for frame_index in frame_indices:
479
+ img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
480
+ img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
481
+ pixel_values = [transform(tile) for tile in img]
482
+ pixel_values = torch.stack(pixel_values)
483
+ num_patches_list.append(pixel_values.shape[0])
484
+ pixel_values_list.append(pixel_values)
485
+ pixel_values = torch.cat(pixel_values_list)
486
+ return pixel_values, num_patches_list
487
+
488
+ video_path = './examples/red-panda.mp4'
489
+ pixel_values, num_patches_list = load_video(video_path, num_segments=8, max_num=1)
490
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
491
+ video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
492
+ question = video_prefix + 'What is the red panda doing?'
493
+ # Frame1: <image>\nFrame2: <image>\n...\nFrame8: <image>\n{question}
494
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
495
+ num_patches_list=num_patches_list, history=None, return_history=True)
496
+ print(f'User: {question}\nAssistant: {response}')
497
+
498
+ question = 'Describe this video in detail.'
499
+ response, history = model.chat(tokenizer, pixel_values, question, generation_config,
500
+ num_patches_list=num_patches_list, history=history, return_history=True)
501
+ print(f'User: {question}\nAssistant: {response}')
502
+ ```
503
+
504
+ #### Streaming Output
505
+
506
+ Besides this method, you can also use the following code to get streamed output.
507
+
508
+ ```python
509
+ from transformers import TextIteratorStreamer
510
+ from threading import Thread
511
+
512
+ # Initialize the streamer
513
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=10)
514
+ # Define the generation configuration
515
+ generation_config = dict(max_new_tokens=1024, do_sample=False, streamer=streamer)
516
+ # Start the model chat in a separate thread
517
+ thread = Thread(target=model.chat, kwargs=dict(
518
+ tokenizer=tokenizer, pixel_values=pixel_values, question=question,
519
+ history=None, return_history=False, generation_config=generation_config,
520
+ ))
521
+ thread.start()
522
+
523
+ # Initialize an empty string to store the generated text
524
+ generated_text = ''
525
+ # Loop through the streamer to get the new text as it is generated
526
+ for new_text in streamer:
527
+ if new_text == model.conv_template.sep:
528
+ break
529
+ generated_text += new_text
530
+ print(new_text, end='', flush=True) # Print each new chunk of generated text on the same line
531
+ ```
532
+
533
+ ## Finetune
534
+
535
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
536
+
537
+ ## Deployment
538
+
539
+ ### LMDeploy
540
+
541
+ LMDeploy is a toolkit for compressing, deploying, and serving LLMs & VLMs.
542
+
543
+ ```sh
544
+ # if lmdeploy<0.7.3, you need to explicitly set chat_template_config=ChatTemplateConfig(model_name='internvl2_5')
545
+ pip install lmdeploy>=0.7.3
546
+ ```
547
+
548
+ LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
549
+
550
+ #### A 'Hello, world' Example
551
+
552
+ ```python
553
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
554
+ from lmdeploy.vl import load_image
555
+
556
+ model = 'OpenGVLab/InternVL3-9B'
557
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
558
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
559
+ response = pipe(('describe this image', image))
560
+ print(response.text)
561
+ ```
562
+
563
+ If `ImportError` occurs while executing this case, please install the required dependency packages as prompted.
564
+
565
+ #### Multi-images Inference
566
+
567
+ When dealing with multiple images, you can put them all in one list. Keep in mind that multiple images will lead to a higher number of input tokens, and as a result, the size of the context window typically needs to be increased.
568
+
569
+ ```python
570
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
571
+ from lmdeploy.vl import load_image
572
+ from lmdeploy.vl.constants import IMAGE_TOKEN
573
+
574
+ model = 'OpenGVLab/InternVL3-9B'
575
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
576
+
577
+ image_urls=[
578
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
579
+ 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg'
580
+ ]
581
+
582
+ images = [load_image(img_url) for img_url in image_urls]
583
+ # Numbering images improves multi-image conversations
584
+ response = pipe((f'Image-1: {IMAGE_TOKEN}\nImage-2: {IMAGE_TOKEN}\ndescribe these two images', images))
585
+ print(response.text)
586
+ ```
587
+
588
+ #### Batch Prompts Inference
589
+
590
+ Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
591
+
592
+ ```python
593
+ from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
594
+ from lmdeploy.vl import load_image
595
+
596
+ model = 'OpenGVLab/InternVL3-9B'
597
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
598
+
599
+ image_urls=[
600
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
601
+ "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/det.jpg"
602
+ ]
603
+ prompts = [('describe this image', load_image(img_url)) for img_url in image_urls]
604
+ response = pipe(prompts)
605
+ print(response)
606
+ ```
607
+
608
+ #### Multi-turn Conversation
609
+
610
+ There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
611
+
612
+ ```python
613
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig, ChatTemplateConfig
614
+ from lmdeploy.vl import load_image
615
+
616
+ model = 'OpenGVLab/InternVL3-9B'
617
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=16384, tp=1), chat_template_config=ChatTemplateConfig(model_name='internvl2_5'))
618
+
619
+ image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
620
+ gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
621
+ sess = pipe.chat(('describe this image', image), gen_config=gen_config)
622
+ print(sess.response.text)
623
+ sess = pipe.chat('What is the woman doing?', session=sess, gen_config=gen_config)
624
+ print(sess.response.text)
625
+ ```
626
+
627
+ #### Service
628
+
629
+ LMDeploy's `api_server` enables models to be easily packed into services with a single command. The provided RESTful APIs are compatible with OpenAI's interfaces. Below are an example of service startup:
630
+
631
+ ```shell
632
+ lmdeploy serve api_server OpenGVLab/InternVL3-9B --chat-template internvl2_5 --server-port 23333 --tp 1
633
+ ```
634
+
635
+ To use the OpenAI-style interface, you need to install OpenAI:
636
+
637
+ ```shell
638
+ pip install openai
639
+ ```
640
+
641
+ Then, use the code below to make the API call:
642
+
643
+ ```python
644
+ from openai import OpenAI
645
+
646
+ client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
647
+ model_name = client.models.list().data[0].id
648
+ response = client.chat.completions.create(
649
+ model=model_name,
650
+ messages=[{
651
+ 'role':
652
+ 'user',
653
+ 'content': [{
654
+ 'type': 'text',
655
+ 'text': 'describe this image',
656
+ }, {
657
+ 'type': 'image_url',
658
+ 'image_url': {
659
+ 'url':
660
+ 'https://modelscope.oss-cn-beijing.aliyuncs.com/resource/tiger.jpeg',
661
+ },
662
+ }],
663
+ }],
664
+ temperature=0.8,
665
+ top_p=0.8)
666
+ print(response)
667
+ ```
668
+
669
+ ## License
670
+
671
+ This project is released under the MIT License. This project uses the pre-trained Qwen2.5 as a component, which is licensed under the Qwen License.
672
+
673
+ ## Citation
674
+
675
+ If you find this project useful in your research, please consider citing:
676
+
677
+ ```BibTeX
678
+ @article{chen2024expanding,
679
+ title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
680
+ author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
681
+ journal={arXiv preprint arXiv:2412.05271},
682
+ year={2024}
683
+ }
684
+ @article{wang2024mpo,
685
+ title={Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization},
686
+ author={Wang, Weiyun and Chen, Zhe and Wang, Wenhai and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Zhu, Jinguo and Zhu, Xizhou and Lu, Lewei and Qiao, Yu and Dai, Jifeng},
687
+ journal={arXiv preprint arXiv:2411.10442},
688
+ year={2024}
689
+ }
690
+ @article{chen2024far,
691
+ title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
692
+ author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
693
+ journal={arXiv preprint arXiv:2404.16821},
694
+ year={2024}
695
+ }
696
+ @inproceedings{chen2024internvl,
697
+ title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
698
+ author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
699
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
700
+ pages={24185--24198},
701
+ year={2024}
702
+ }
703
+ ```
added_tokens.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</box>": 128141,
3
+ "</img>": 128134,
4
+ "</quad>": 128137,
5
+ "</ref>": 128139,
6
+ "<IMG_CONTEXT>": 128135,
7
+ "<box>": 128140,
8
+ "<img>": 128133,
9
+ "<quad>": 128136,
10
+ "<ref>": 128138
11
+ }
config.json ADDED
@@ -0,0 +1,225 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "/mnt/petrelfs/share_data/wangweiyun/share_internvl_preview/InternVL3-9B-Pretrain",
4
+ "architectures": [
5
+ "InternVLChatModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_internvl_chat.InternVLChatConfig",
9
+ "AutoModel": "modeling_internvl_chat.InternVLChatModel",
10
+ "AutoModelForCausalLM": "modeling_internvl_chat.InternVLChatModel"
11
+ },
12
+ "downsample_ratio": 0.5,
13
+ "dynamic_image_size": true,
14
+ "force_image_size": 448,
15
+ "hidden_size": 4096,
16
+ "image_fold": null,
17
+ "llm_config": {
18
+ "_name_or_path": "/mnt/petrelfs/share_data/wangweiyun/share_ckpt/hf_home/internlm2-chat-7b",
19
+ "add_cross_attention": false,
20
+ "architectures": [
21
+ "InternLM2ForCausalLM"
22
+ ],
23
+ "attn_implementation": "flash_attention_2",
24
+ "auto_map": {
25
+ "AutoConfig": "configuration_internlm2.InternLM2Config",
26
+ "AutoModel": "modeling_internlm2.InternLM2ForCausalLM",
27
+ "AutoModelForCausalLM": "modeling_internlm2.InternLM2ForCausalLM"
28
+ },
29
+ "bad_words_ids": null,
30
+ "begin_suppress_tokens": null,
31
+ "bias": false,
32
+ "bos_token_id": 1,
33
+ "chunk_size_feed_forward": 0,
34
+ "cross_attention_hidden_size": null,
35
+ "decoder_start_token_id": null,
36
+ "diversity_penalty": 0.0,
37
+ "do_sample": false,
38
+ "early_stopping": false,
39
+ "encoder_no_repeat_ngram_size": 0,
40
+ "eos_token_id": 2,
41
+ "exponential_decay_length_penalty": null,
42
+ "finetuning_task": null,
43
+ "forced_bos_token_id": null,
44
+ "forced_eos_token_id": null,
45
+ "hidden_act": "silu",
46
+ "hidden_size": 4096,
47
+ "id2label": {
48
+ "0": "LABEL_0",
49
+ "1": "LABEL_1"
50
+ },
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 10240,
53
+ "is_decoder": false,
54
+ "is_encoder_decoder": false,
55
+ "label2id": {
56
+ "LABEL_0": 0,
57
+ "LABEL_1": 1
58
+ },
59
+ "length_penalty": 1.0,
60
+ "max_length": 20,
61
+ "max_position_embeddings": 32768,
62
+ "min_length": 0,
63
+ "model_type": "internlm2",
64
+ "moe_config": null,
65
+ "no_repeat_ngram_size": 0,
66
+ "num_attention_heads": 32,
67
+ "num_beam_groups": 1,
68
+ "num_beams": 1,
69
+ "num_hidden_layers": 48,
70
+ "num_key_value_heads": 2,
71
+ "num_return_sequences": 1,
72
+ "output_attentions": false,
73
+ "output_hidden_states": false,
74
+ "output_scores": false,
75
+ "pad_token_id": 2,
76
+ "prefix": null,
77
+ "pretraining_tp": 1,
78
+ "problem_type": null,
79
+ "pruned_heads": {},
80
+ "remove_invalid_values": false,
81
+ "repetition_penalty": 1.0,
82
+ "return_dict": true,
83
+ "return_dict_in_generate": false,
84
+ "rms_norm_eps": 1e-05,
85
+ "rope_scaling": {
86
+ "factor": 2.0,
87
+ "type": "dynamic"
88
+ },
89
+ "rope_theta": 50000000,
90
+ "sep_token_id": null,
91
+ "suppress_tokens": null,
92
+ "task_specific_params": null,
93
+ "temperature": 1.0,
94
+ "tf_legacy_loss": false,
95
+ "tie_encoder_decoder": false,
96
+ "tie_word_embeddings": false,
97
+ "tokenizer_class": null,
98
+ "top_k": 50,
99
+ "top_p": 1.0,
100
+ "torch_dtype": "bfloat16",
101
+ "torchscript": false,
102
+ "transformers_version": "4.45.1",
103
+ "typical_p": 1.0,
104
+ "use_bfloat16": false,
105
+ "use_cache": true,
106
+ "vocab_size": 128142
107
+ },
108
+ "max_dynamic_patch": 12,
109
+ "min_dynamic_patch": 1,
110
+ "model_type": "internvl_chat",
111
+ "pad2square": false,
112
+ "ps_version": "v2",
113
+ "select_layer": -1,
114
+ "template": "internvl2_5",
115
+ "tie_word_embeddings": false,
116
+ "torch_dtype": "bfloat16",
117
+ "transformers_version": null,
118
+ "use_backbone_lora": 0,
119
+ "use_img_start_end_token": true,
120
+ "use_llm_lora": 0,
121
+ "use_thumbnail": true,
122
+ "vision_config": {
123
+ "_name_or_path": "pretrained/intern_vit_6b_448px_v1_2/",
124
+ "add_cross_attention": false,
125
+ "architectures": [
126
+ "InternVisionModel"
127
+ ],
128
+ "attention_dropout": 0.0,
129
+ "auto_map": {
130
+ "AutoConfig": "configuration_intern_vit.InternVisionConfig",
131
+ "AutoModel": "modeling_intern_vit.InternVisionModel"
132
+ },
133
+ "bad_words_ids": null,
134
+ "begin_suppress_tokens": null,
135
+ "bos_token_id": null,
136
+ "capacity_factor": 1.2,
137
+ "chunk_size_feed_forward": 0,
138
+ "cross_attention_hidden_size": null,
139
+ "decoder_start_token_id": null,
140
+ "diversity_penalty": 0.0,
141
+ "do_sample": false,
142
+ "drop_path_rate": 0.1,
143
+ "dropout": 0.0,
144
+ "early_stopping": false,
145
+ "encoder_no_repeat_ngram_size": 0,
146
+ "eos_token_id": null,
147
+ "eval_capacity_factor": 1.4,
148
+ "exponential_decay_length_penalty": null,
149
+ "finetuning_task": null,
150
+ "forced_bos_token_id": null,
151
+ "forced_eos_token_id": null,
152
+ "hidden_act": "gelu",
153
+ "hidden_size": 1024,
154
+ "id2label": {
155
+ "0": "LABEL_0",
156
+ "1": "LABEL_1"
157
+ },
158
+ "image_size": 448,
159
+ "initializer_factor": 0.1,
160
+ "initializer_range": 1e-10,
161
+ "intermediate_size": 4096,
162
+ "is_decoder": false,
163
+ "is_encoder_decoder": false,
164
+ "label2id": {
165
+ "LABEL_0": 0,
166
+ "LABEL_1": 1
167
+ },
168
+ "laux_allreduce": "all_nodes",
169
+ "layer_norm_eps": 1e-06,
170
+ "length_penalty": 1.0,
171
+ "max_length": 20,
172
+ "min_length": 0,
173
+ "model_type": "intern_vit_6b",
174
+ "moe_coeff_ratio": 0.5,
175
+ "moe_intermediate_size": 768,
176
+ "moe_output_scale": 4.0,
177
+ "no_repeat_ngram_size": 0,
178
+ "noisy_gate_policy": "RSample_before",
179
+ "norm_type": "layer_norm",
180
+ "num_attention_heads": 16,
181
+ "num_beam_groups": 1,
182
+ "num_beams": 1,
183
+ "num_channels": 3,
184
+ "num_experts": 8,
185
+ "num_hidden_layers": 24,
186
+ "num_return_sequences": 1,
187
+ "num_routed_experts": 4,
188
+ "num_shared_experts": 4,
189
+ "output_attentions": false,
190
+ "output_hidden_states": false,
191
+ "output_scores": false,
192
+ "pad_token_id": null,
193
+ "patch_size": 14,
194
+ "prefix": null,
195
+ "problem_type": null,
196
+ "pruned_heads": {},
197
+ "qk_normalization": false,
198
+ "qkv_bias": true,
199
+ "remove_invalid_values": false,
200
+ "repetition_penalty": 1.0,
201
+ "return_dict": true,
202
+ "return_dict_in_generate": false,
203
+ "sep_token_id": null,
204
+ "shared_expert_intermediate_size": 3072,
205
+ "suppress_tokens": null,
206
+ "task_specific_params": null,
207
+ "temperature": 1.0,
208
+ "tf_legacy_loss": false,
209
+ "tie_encoder_decoder": false,
210
+ "tie_word_embeddings": true,
211
+ "tokenizer_class": null,
212
+ "top_k": 50,
213
+ "top_p": 1.0,
214
+ "torch_dtype": "bfloat16",
215
+ "torchscript": false,
216
+ "transformers_version": "4.45.1",
217
+ "typical_p": 1.0,
218
+ "use_bfloat16": false,
219
+ "use_flash_attn": true,
220
+ "use_moe": false,
221
+ "use_residual": true,
222
+ "use_rts": false,
223
+ "use_weighted_residual": false
224
+ }
225
+ }
configuration_intern_vit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import os
7
+ from typing import Union
8
+
9
+ from transformers.configuration_utils import PretrainedConfig
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+
15
+ class InternVisionConfig(PretrainedConfig):
16
+ r"""
17
+ This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
18
+ instantiate a vision encoder according to the specified arguments, defining the model architecture.
19
+
20
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
21
+ documentation from [`PretrainedConfig`] for more information.
22
+
23
+ Args:
24
+ num_channels (`int`, *optional*, defaults to 3):
25
+ Number of color channels in the input images (e.g., 3 for RGB).
26
+ patch_size (`int`, *optional*, defaults to 14):
27
+ The size (resolution) of each patch.
28
+ image_size (`int`, *optional*, defaults to 224):
29
+ The size (resolution) of each image.
30
+ qkv_bias (`bool`, *optional*, defaults to `False`):
31
+ Whether to add a bias to the queries and values in the self-attention layers.
32
+ hidden_size (`int`, *optional*, defaults to 3200):
33
+ Dimensionality of the encoder layers and the pooler layer.
34
+ num_attention_heads (`int`, *optional*, defaults to 25):
35
+ Number of attention heads for each attention layer in the Transformer encoder.
36
+ intermediate_size (`int`, *optional*, defaults to 12800):
37
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
38
+ qk_normalization (`bool`, *optional*, defaults to `True`):
39
+ Whether to normalize the queries and keys in the self-attention layers.
40
+ num_hidden_layers (`int`, *optional*, defaults to 48):
41
+ Number of hidden layers in the Transformer encoder.
42
+ use_flash_attn (`bool`, *optional*, defaults to `True`):
43
+ Whether to use flash attention mechanism.
44
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
45
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
46
+ `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
47
+ layer_norm_eps (`float`, *optional*, defaults to 1e-6):
48
+ The epsilon used by the layer normalization layers.
49
+ dropout (`float`, *optional*, defaults to 0.0):
50
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
51
+ drop_path_rate (`float`, *optional*, defaults to 0.0):
52
+ Dropout rate for stochastic depth.
53
+ attention_dropout (`float`, *optional*, defaults to 0.0):
54
+ The dropout ratio for the attention probabilities.
55
+ initializer_range (`float`, *optional*, defaults to 0.02):
56
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
57
+ initializer_factor (`float`, *optional*, defaults to 0.1):
58
+ A factor for layer scale.
59
+ """
60
+
61
+ model_type = 'intern_vit_6b'
62
+
63
+ def __init__(
64
+ self,
65
+ num_channels=3,
66
+ patch_size=14,
67
+ image_size=224,
68
+ qkv_bias=False,
69
+ hidden_size=3200,
70
+ num_attention_heads=25,
71
+ intermediate_size=12800,
72
+ qk_normalization=True,
73
+ num_hidden_layers=48,
74
+ use_flash_attn=True,
75
+ hidden_act='gelu',
76
+ norm_type='rms_norm',
77
+ layer_norm_eps=1e-6,
78
+ dropout=0.0,
79
+ drop_path_rate=0.0,
80
+ attention_dropout=0.0,
81
+ initializer_range=0.02,
82
+ initializer_factor=0.1,
83
+ **kwargs,
84
+ ):
85
+ super().__init__(**kwargs)
86
+
87
+ self.hidden_size = hidden_size
88
+ self.intermediate_size = intermediate_size
89
+ self.dropout = dropout
90
+ self.drop_path_rate = drop_path_rate
91
+ self.num_hidden_layers = num_hidden_layers
92
+ self.num_attention_heads = num_attention_heads
93
+ self.num_channels = num_channels
94
+ self.patch_size = patch_size
95
+ self.image_size = image_size
96
+ self.initializer_range = initializer_range
97
+ self.initializer_factor = initializer_factor
98
+ self.attention_dropout = attention_dropout
99
+ self.layer_norm_eps = layer_norm_eps
100
+ self.hidden_act = hidden_act
101
+ self.norm_type = norm_type
102
+ self.qkv_bias = qkv_bias
103
+ self.qk_normalization = qk_normalization
104
+ self.use_flash_attn = use_flash_attn
105
+
106
+ @classmethod
107
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
108
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
109
+
110
+ if 'vision_config' in config_dict:
111
+ config_dict = config_dict['vision_config']
112
+
113
+ if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
114
+ logger.warning(
115
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
116
+ f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
117
+ )
118
+
119
+ return cls.from_dict(config_dict, **kwargs)
configuration_internlm2.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ InternLM2 model configuration"""
17
+
18
+ from transformers.configuration_utils import PretrainedConfig
19
+ from transformers.utils import logging
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
24
+
25
+
26
+ # Modified from transformers.model.llama.configuration_llama.LlamaConfig
27
+ class InternLM2Config(PretrainedConfig):
28
+ r"""
29
+ This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
30
+ an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
31
+ configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
32
+
33
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
34
+ documentation from [`PretrainedConfig`] for more information.
35
+
36
+
37
+ Args:
38
+ vocab_size (`int`, *optional*, defaults to 32000):
39
+ Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
40
+ `inputs_ids` passed when calling [`InternLM2Model`]
41
+ hidden_size (`int`, *optional*, defaults to 4096):
42
+ Dimension of the hidden representations.
43
+ intermediate_size (`int`, *optional*, defaults to 11008):
44
+ Dimension of the MLP representations.
45
+ num_hidden_layers (`int`, *optional*, defaults to 32):
46
+ Number of hidden layers in the Transformer encoder.
47
+ num_attention_heads (`int`, *optional*, defaults to 32):
48
+ Number of attention heads for each attention layer in the Transformer encoder.
49
+ num_key_value_heads (`int`, *optional*):
50
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
51
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
52
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
53
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
54
+ by meanpooling all the original heads within that group. For more details checkout [this
55
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
56
+ `num_attention_heads`.
57
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
58
+ The non-linear activation function (function or string) in the decoder.
59
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
60
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
61
+ just in case (e.g., 512 or 1024 or 2048).
62
+ initializer_range (`float`, *optional*, defaults to 0.02):
63
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
65
+ The epsilon used by the rms normalization layers.
66
+ use_cache (`bool`, *optional*, defaults to `True`):
67
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
68
+ relevant if `config.is_decoder=True`.
69
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
70
+ Whether to tie weight embeddings
71
+ Example:
72
+
73
+ """
74
+ model_type = 'internlm2'
75
+ _auto_class = 'AutoConfig'
76
+
77
+ def __init__( # pylint: disable=W0102
78
+ self,
79
+ vocab_size=103168,
80
+ hidden_size=4096,
81
+ intermediate_size=11008,
82
+ num_hidden_layers=32,
83
+ num_attention_heads=32,
84
+ num_key_value_heads=None,
85
+ hidden_act='silu',
86
+ max_position_embeddings=2048,
87
+ initializer_range=0.02,
88
+ rms_norm_eps=1e-6,
89
+ use_cache=True,
90
+ pad_token_id=0,
91
+ bos_token_id=1,
92
+ eos_token_id=2,
93
+ tie_word_embeddings=False,
94
+ bias=True,
95
+ rope_theta=10000,
96
+ rope_scaling=None,
97
+ attn_implementation='eager',
98
+ **kwargs,
99
+ ):
100
+ self.vocab_size = vocab_size
101
+ self.max_position_embeddings = max_position_embeddings
102
+ self.hidden_size = hidden_size
103
+ self.intermediate_size = intermediate_size
104
+ self.num_hidden_layers = num_hidden_layers
105
+ self.num_attention_heads = num_attention_heads
106
+ self.bias = bias
107
+
108
+ if num_key_value_heads is None:
109
+ num_key_value_heads = num_attention_heads
110
+ self.num_key_value_heads = num_key_value_heads
111
+
112
+ self.hidden_act = hidden_act
113
+ self.initializer_range = initializer_range
114
+ self.rms_norm_eps = rms_norm_eps
115
+ self.use_cache = use_cache
116
+ self.rope_theta = rope_theta
117
+ self.rope_scaling = rope_scaling
118
+ self._rope_scaling_validation()
119
+
120
+ self.attn_implementation = attn_implementation
121
+ if self.attn_implementation is None:
122
+ self.attn_implementation = 'eager'
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ bos_token_id=bos_token_id,
126
+ eos_token_id=eos_token_id,
127
+ tie_word_embeddings=tie_word_embeddings,
128
+ **kwargs,
129
+ )
130
+
131
+ def _rope_scaling_validation(self):
132
+ """
133
+ Validate the `rope_scaling` configuration.
134
+ """
135
+ if self.rope_scaling is None:
136
+ return
137
+
138
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
139
+ raise ValueError(
140
+ '`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, '
141
+ f'got {self.rope_scaling}'
142
+ )
143
+ rope_scaling_type = self.rope_scaling.get('type', None)
144
+ rope_scaling_factor = self.rope_scaling.get('factor', None)
145
+ if rope_scaling_type is None or rope_scaling_type not in ['linear', 'dynamic']:
146
+ raise ValueError(
147
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
148
+ )
149
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
150
+ raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
configuration_internvl_chat.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+
7
+ import copy
8
+
9
+ from transformers import AutoConfig, LlamaConfig, Qwen2Config
10
+ from transformers.configuration_utils import PretrainedConfig
11
+ from transformers.utils import logging
12
+
13
+ from .configuration_intern_vit import InternVisionConfig
14
+ from .configuration_internlm2 import InternLM2Config
15
+
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+
20
+ class InternVLChatConfig(PretrainedConfig):
21
+ model_type = 'internvl_chat'
22
+ is_composition = True
23
+
24
+ def __init__(
25
+ self,
26
+ vision_config=None,
27
+ llm_config=None,
28
+ use_backbone_lora=0,
29
+ use_llm_lora=0,
30
+ select_layer=-1,
31
+ force_image_size=None,
32
+ downsample_ratio=0.5,
33
+ template=None,
34
+ dynamic_image_size=False,
35
+ use_thumbnail=False,
36
+ ps_version='v1',
37
+ min_dynamic_patch=1,
38
+ max_dynamic_patch=6,
39
+ **kwargs):
40
+ super().__init__(**kwargs)
41
+
42
+ if vision_config is None:
43
+ vision_config = {'architectures': ['InternVisionModel']}
44
+ logger.info('vision_config is None. Initializing the InternVisionConfig with default values.')
45
+
46
+ if llm_config is None:
47
+ llm_config = {'architectures': ['InternLM2ForCausalLM']}
48
+ logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).')
49
+
50
+ self.vision_config = InternVisionConfig(**vision_config)
51
+ if llm_config['architectures'][0] == 'LlamaForCausalLM':
52
+ self.llm_config = LlamaConfig(**llm_config)
53
+ elif llm_config['architectures'][0] == 'InternLM2ForCausalLM':
54
+ self.llm_config = InternLM2Config(**llm_config)
55
+ elif llm_config['architectures'][0] == 'Qwen2ForCausalLM':
56
+ self.llm_config = Qwen2Config(**llm_config)
57
+ else:
58
+ raise ValueError('Unsupported architecture: {}'.format(llm_config['architectures'][0]))
59
+ self.use_backbone_lora = use_backbone_lora
60
+ self.use_llm_lora = use_llm_lora
61
+ self.select_layer = select_layer
62
+ self.force_image_size = force_image_size
63
+ self.downsample_ratio = downsample_ratio
64
+ self.template = template
65
+ self.dynamic_image_size = dynamic_image_size
66
+ self.use_thumbnail = use_thumbnail
67
+ self.ps_version = ps_version # pixel shuffle version
68
+ self.min_dynamic_patch = min_dynamic_patch
69
+ self.max_dynamic_patch = max_dynamic_patch
70
+ # By default, we use tie_word_embeddings=False for models of all sizes.
71
+ self.tie_word_embeddings = self.llm_config.tie_word_embeddings
72
+
73
+ logger.info(f'vision_select_layer: {self.select_layer}')
74
+ logger.info(f'ps_version: {self.ps_version}')
75
+ logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}')
76
+ logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}')
77
+
78
+ def to_dict(self):
79
+ """
80
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
81
+
82
+ Returns:
83
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
84
+ """
85
+ output = copy.deepcopy(self.__dict__)
86
+ output['vision_config'] = self.vision_config.to_dict()
87
+ output['llm_config'] = self.llm_config.to_dict()
88
+ output['model_type'] = self.__class__.model_type
89
+ output['use_backbone_lora'] = self.use_backbone_lora
90
+ output['use_llm_lora'] = self.use_llm_lora
91
+ output['select_layer'] = self.select_layer
92
+ output['force_image_size'] = self.force_image_size
93
+ output['downsample_ratio'] = self.downsample_ratio
94
+ output['template'] = self.template
95
+ output['dynamic_image_size'] = self.dynamic_image_size
96
+ output['use_thumbnail'] = self.use_thumbnail
97
+ output['ps_version'] = self.ps_version
98
+ output['min_dynamic_patch'] = self.min_dynamic_patch
99
+ output['max_dynamic_patch'] = self.max_dynamic_patch
100
+
101
+ return output
conversation.py ADDED
@@ -0,0 +1,391 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Conversation prompt templates.
3
+
4
+ We kindly request that you import fastchat instead of copying this file if you wish to use it.
5
+ If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
6
+
7
+ Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
8
+ """
9
+
10
+ import dataclasses
11
+ from enum import IntEnum, auto
12
+ from typing import Dict, List, Tuple, Union
13
+
14
+
15
+ class SeparatorStyle(IntEnum):
16
+ """Separator styles."""
17
+
18
+ ADD_COLON_SINGLE = auto()
19
+ ADD_COLON_TWO = auto()
20
+ ADD_COLON_SPACE_SINGLE = auto()
21
+ NO_COLON_SINGLE = auto()
22
+ NO_COLON_TWO = auto()
23
+ ADD_NEW_LINE_SINGLE = auto()
24
+ LLAMA2 = auto()
25
+ CHATGLM = auto()
26
+ CHATML = auto()
27
+ CHATINTERN = auto()
28
+ DOLLY = auto()
29
+ RWKV = auto()
30
+ PHOENIX = auto()
31
+ ROBIN = auto()
32
+ FALCON_CHAT = auto()
33
+ CHATGLM3 = auto()
34
+ INTERNVL_ZH = auto()
35
+ MPT = auto()
36
+
37
+
38
+ @dataclasses.dataclass
39
+ class Conversation:
40
+ """A class that manages prompt templates and keeps all conversation history."""
41
+
42
+ # The name of this template
43
+ name: str
44
+ # The template of the system prompt
45
+ system_template: str = '{system_message}'
46
+ # The system message
47
+ system_message: str = ''
48
+ # The names of two roles
49
+ roles: Tuple[str] = ('USER', 'ASSISTANT')
50
+ # All messages. Each item is (role, message).
51
+ messages: List[List[str]] = ()
52
+ # The number of few shot examples
53
+ offset: int = 0
54
+ # The separator style and configurations
55
+ sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
56
+ sep: str = '\n'
57
+ sep2: str = None
58
+ # Stop criteria (the default one is EOS token)
59
+ stop_str: Union[str, List[str]] = None
60
+ # Stops generation if meeting any token in this list
61
+ stop_token_ids: List[int] = None
62
+
63
+ def get_prompt(self) -> str:
64
+ """Get the prompt for generation."""
65
+ system_prompt = self.system_template.format(system_message=self.system_message)
66
+ if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
67
+ ret = system_prompt + self.sep
68
+ for role, message in self.messages:
69
+ if message:
70
+ ret += role + ': ' + message + self.sep
71
+ else:
72
+ ret += role + ':'
73
+ return ret
74
+ elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = system_prompt + seps[0]
77
+ for i, (role, message) in enumerate(self.messages):
78
+ if message:
79
+ ret += role + ': ' + message + seps[i % 2]
80
+ else:
81
+ ret += role + ':'
82
+ return ret
83
+ elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
84
+ ret = system_prompt + self.sep
85
+ for role, message in self.messages:
86
+ if message:
87
+ ret += role + ': ' + message + self.sep
88
+ else:
89
+ ret += role + ': ' # must be end with a space
90
+ return ret
91
+ elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
92
+ ret = '' if system_prompt == '' else system_prompt + self.sep
93
+ for role, message in self.messages:
94
+ if message:
95
+ ret += role + '\n' + message + self.sep
96
+ else:
97
+ ret += role + '\n'
98
+ return ret
99
+ elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
100
+ ret = system_prompt
101
+ for role, message in self.messages:
102
+ if message:
103
+ ret += role + message + self.sep
104
+ else:
105
+ ret += role
106
+ return ret
107
+ elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
108
+ seps = [self.sep, self.sep2]
109
+ ret = system_prompt
110
+ for i, (role, message) in enumerate(self.messages):
111
+ if message:
112
+ ret += role + message + seps[i % 2]
113
+ else:
114
+ ret += role
115
+ return ret
116
+ elif self.sep_style == SeparatorStyle.RWKV:
117
+ ret = system_prompt
118
+ for i, (role, message) in enumerate(self.messages):
119
+ if message:
120
+ ret += (
121
+ role
122
+ + ': '
123
+ + message.replace('\r\n', '\n').replace('\n\n', '\n')
124
+ )
125
+ ret += '\n\n'
126
+ else:
127
+ ret += role + ':'
128
+ return ret
129
+ elif self.sep_style == SeparatorStyle.LLAMA2:
130
+ seps = [self.sep, self.sep2]
131
+ if self.system_message:
132
+ ret = system_prompt
133
+ else:
134
+ ret = '[INST] '
135
+ for i, (role, message) in enumerate(self.messages):
136
+ tag = self.roles[i % 2]
137
+ if message:
138
+ if i == 0:
139
+ ret += message + ' '
140
+ else:
141
+ ret += tag + ' ' + message + seps[i % 2]
142
+ else:
143
+ ret += tag
144
+ return ret
145
+ elif self.sep_style == SeparatorStyle.CHATGLM:
146
+ # source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
147
+ # source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
148
+ round_add_n = 1 if self.name == 'chatglm2' else 0
149
+ if system_prompt:
150
+ ret = system_prompt + self.sep
151
+ else:
152
+ ret = ''
153
+
154
+ for i, (role, message) in enumerate(self.messages):
155
+ if i % 2 == 0:
156
+ ret += f'[Round {i//2 + round_add_n}]{self.sep}'
157
+
158
+ if message:
159
+ ret += f'{role}:{message}{self.sep}'
160
+ else:
161
+ ret += f'{role}:'
162
+ return ret
163
+ elif self.sep_style == SeparatorStyle.CHATML:
164
+ ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
165
+ for role, message in self.messages:
166
+ if message:
167
+ ret += role + '\n' + message + self.sep + '\n'
168
+ else:
169
+ ret += role + '\n'
170
+ return ret
171
+ elif self.sep_style == SeparatorStyle.CHATGLM3:
172
+ ret = ''
173
+ if self.system_message:
174
+ ret += system_prompt
175
+ for role, message in self.messages:
176
+ if message:
177
+ ret += role + '\n' + ' ' + message
178
+ else:
179
+ ret += role
180
+ return ret
181
+ elif self.sep_style == SeparatorStyle.CHATINTERN:
182
+ # source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
183
+ seps = [self.sep, self.sep2]
184
+ ret = system_prompt
185
+ for i, (role, message) in enumerate(self.messages):
186
+ # if i % 2 == 0:
187
+ # ret += "<s>"
188
+ if message:
189
+ ret += role + ':' + message + seps[i % 2] + '\n'
190
+ else:
191
+ ret += role + ':'
192
+ return ret
193
+ elif self.sep_style == SeparatorStyle.DOLLY:
194
+ seps = [self.sep, self.sep2]
195
+ ret = system_prompt
196
+ for i, (role, message) in enumerate(self.messages):
197
+ if message:
198
+ ret += role + ':\n' + message + seps[i % 2]
199
+ if i % 2 == 1:
200
+ ret += '\n\n'
201
+ else:
202
+ ret += role + ':\n'
203
+ return ret
204
+ elif self.sep_style == SeparatorStyle.PHOENIX:
205
+ ret = system_prompt
206
+ for role, message in self.messages:
207
+ if message:
208
+ ret += role + ': ' + '<s>' + message + '</s>'
209
+ else:
210
+ ret += role + ': ' + '<s>'
211
+ return ret
212
+ elif self.sep_style == SeparatorStyle.ROBIN:
213
+ ret = system_prompt + self.sep
214
+ for role, message in self.messages:
215
+ if message:
216
+ ret += role + ':\n' + message + self.sep
217
+ else:
218
+ ret += role + ':\n'
219
+ return ret
220
+ elif self.sep_style == SeparatorStyle.FALCON_CHAT:
221
+ ret = ''
222
+ if self.system_message:
223
+ ret += system_prompt + self.sep
224
+ for role, message in self.messages:
225
+ if message:
226
+ ret += role + ': ' + message + self.sep
227
+ else:
228
+ ret += role + ':'
229
+
230
+ return ret
231
+ elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
232
+ seps = [self.sep, self.sep2]
233
+ ret = self.system_message + seps[0]
234
+ for i, (role, message) in enumerate(self.messages):
235
+ if message:
236
+ ret += role + ': ' + message + seps[i % 2]
237
+ else:
238
+ ret += role + ':'
239
+ return ret
240
+ elif self.sep_style == SeparatorStyle.MPT:
241
+ ret = system_prompt + self.sep
242
+ for role, message in self.messages:
243
+ if message:
244
+ if type(message) is tuple:
245
+ message, _, _ = message
246
+ ret += role + message + self.sep
247
+ else:
248
+ ret += role
249
+ return ret
250
+ else:
251
+ raise ValueError(f'Invalid style: {self.sep_style}')
252
+
253
+ def set_system_message(self, system_message: str):
254
+ """Set the system message."""
255
+ self.system_message = system_message
256
+
257
+ def append_message(self, role: str, message: str):
258
+ """Append a new message."""
259
+ self.messages.append([role, message])
260
+
261
+ def update_last_message(self, message: str):
262
+ """Update the last output.
263
+
264
+ The last message is typically set to be None when constructing the prompt,
265
+ so we need to update it in-place after getting the response from a model.
266
+ """
267
+ self.messages[-1][1] = message
268
+
269
+ def to_gradio_chatbot(self):
270
+ """Convert the conversation to gradio chatbot format."""
271
+ ret = []
272
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
273
+ if i % 2 == 0:
274
+ ret.append([msg, None])
275
+ else:
276
+ ret[-1][-1] = msg
277
+ return ret
278
+
279
+ def to_openai_api_messages(self):
280
+ """Convert the conversation to OpenAI chat completion format."""
281
+ ret = [{'role': 'system', 'content': self.system_message}]
282
+
283
+ for i, (_, msg) in enumerate(self.messages[self.offset :]):
284
+ if i % 2 == 0:
285
+ ret.append({'role': 'user', 'content': msg})
286
+ else:
287
+ if msg is not None:
288
+ ret.append({'role': 'assistant', 'content': msg})
289
+ return ret
290
+
291
+ def copy(self):
292
+ return Conversation(
293
+ name=self.name,
294
+ system_template=self.system_template,
295
+ system_message=self.system_message,
296
+ roles=self.roles,
297
+ messages=[[x, y] for x, y in self.messages],
298
+ offset=self.offset,
299
+ sep_style=self.sep_style,
300
+ sep=self.sep,
301
+ sep2=self.sep2,
302
+ stop_str=self.stop_str,
303
+ stop_token_ids=self.stop_token_ids,
304
+ )
305
+
306
+ def dict(self):
307
+ return {
308
+ 'template_name': self.name,
309
+ 'system_message': self.system_message,
310
+ 'roles': self.roles,
311
+ 'messages': self.messages,
312
+ 'offset': self.offset,
313
+ }
314
+
315
+
316
+ # A global registry for all conversation templates
317
+ conv_templates: Dict[str, Conversation] = {}
318
+
319
+
320
+ def register_conv_template(template: Conversation, override: bool = False):
321
+ """Register a new conversation template."""
322
+ if not override:
323
+ assert (
324
+ template.name not in conv_templates
325
+ ), f'{template.name} has been registered.'
326
+
327
+ conv_templates[template.name] = template
328
+
329
+
330
+ def get_conv_template(name: str) -> Conversation:
331
+ """Get a conversation template."""
332
+ return conv_templates[name].copy()
333
+
334
+
335
+ # Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
336
+ # is that during training, the preprocessing function for the Hermes-2 template doesn't add
337
+ # <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
338
+ # Therefore, they are completely equivalent during inference.
339
+ register_conv_template(
340
+ Conversation(
341
+ name='Hermes-2',
342
+ system_template='<|im_start|>system\n{system_message}',
343
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
344
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
345
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
346
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
347
+ sep_style=SeparatorStyle.MPT,
348
+ sep='<|im_end|>',
349
+ stop_str='<|endoftext|>',
350
+ )
351
+ )
352
+
353
+
354
+ register_conv_template(
355
+ Conversation(
356
+ name='internlm2-chat',
357
+ system_template='<|im_start|>system\n{system_message}',
358
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
359
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
360
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
361
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
362
+ sep_style=SeparatorStyle.MPT,
363
+ sep='<|im_end|>',
364
+ )
365
+ )
366
+
367
+
368
+ register_conv_template(
369
+ Conversation(
370
+ name='phi3-chat',
371
+ system_template='<|system|>\n{system_message}',
372
+ # note: The new system prompt was not used here to avoid changes in benchmark performance.
373
+ # system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
374
+ system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
375
+ roles=('<|user|>\n', '<|assistant|>\n'),
376
+ sep_style=SeparatorStyle.MPT,
377
+ sep='<|end|>',
378
+ )
379
+ )
380
+
381
+
382
+ register_conv_template(
383
+ Conversation(
384
+ name='internvl2_5',
385
+ system_template='<|im_start|>system\n{system_message}',
386
+ system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
387
+ roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
388
+ sep_style=SeparatorStyle.MPT,
389
+ sep='<|im_end|>\n',
390
+ )
391
+ )
examples/image1.jpg ADDED
examples/image2.jpg ADDED

Git LFS Details

  • SHA256: 08487494b8dc08d44bc36491adf3ab89ff30d13a3122da86f3cd67cad89eeee8
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
examples/red-panda.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
3
+ size 1867237
generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "transformers_version": "4.45.1"
4
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b24192d3cff3ed502b6c42fae253b8d2749f62a5e9aa6f0fdf0e80493c6ceace
3
+ size 4958894224
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:954aeda05df69448bb4c419fb8f24d90ee46657a7aabbae0089f23edeead059d
3
+ size 4928566648
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea03b003c9a1ae252df722a0d9ae8a521f487be193b79c893bfa0ed553e3e7aa
3
+ size 4928566648
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40f15335a4e400c3ebd0a5423f22fdca0a830489f929d58241acd266ea12d89b
3
+ size 3461643528
model.safetensors.index.json ADDED
@@ -0,0 +1,692 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 18277586944
4
+ },
5
+ "weight_map": {
6
+ "language_model.model.layers.0.attention.wo.weight": "model-00001-of-00004.safetensors",
7
+ "language_model.model.layers.0.attention.wqkv.weight": "model-00001-of-00004.safetensors",
8
+ "language_model.model.layers.0.attention_norm.weight": "model-00001-of-00004.safetensors",
9
+ "language_model.model.layers.0.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
10
+ "language_model.model.layers.0.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
11
+ "language_model.model.layers.0.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
12
+ "language_model.model.layers.0.ffn_norm.weight": "model-00001-of-00004.safetensors",
13
+ "language_model.model.layers.1.attention.wo.weight": "model-00001-of-00004.safetensors",
14
+ "language_model.model.layers.1.attention.wqkv.weight": "model-00001-of-00004.safetensors",
15
+ "language_model.model.layers.1.attention_norm.weight": "model-00001-of-00004.safetensors",
16
+ "language_model.model.layers.1.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
17
+ "language_model.model.layers.1.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
18
+ "language_model.model.layers.1.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
19
+ "language_model.model.layers.1.ffn_norm.weight": "model-00001-of-00004.safetensors",
20
+ "language_model.model.layers.10.attention.wo.weight": "model-00001-of-00004.safetensors",
21
+ "language_model.model.layers.10.attention.wqkv.weight": "model-00001-of-00004.safetensors",
22
+ "language_model.model.layers.10.attention_norm.weight": "model-00002-of-00004.safetensors",
23
+ "language_model.model.layers.10.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
24
+ "language_model.model.layers.10.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
25
+ "language_model.model.layers.10.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
26
+ "language_model.model.layers.10.ffn_norm.weight": "model-00002-of-00004.safetensors",
27
+ "language_model.model.layers.11.attention.wo.weight": "model-00002-of-00004.safetensors",
28
+ "language_model.model.layers.11.attention.wqkv.weight": "model-00002-of-00004.safetensors",
29
+ "language_model.model.layers.11.attention_norm.weight": "model-00002-of-00004.safetensors",
30
+ "language_model.model.layers.11.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
31
+ "language_model.model.layers.11.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
32
+ "language_model.model.layers.11.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
33
+ "language_model.model.layers.11.ffn_norm.weight": "model-00002-of-00004.safetensors",
34
+ "language_model.model.layers.12.attention.wo.weight": "model-00002-of-00004.safetensors",
35
+ "language_model.model.layers.12.attention.wqkv.weight": "model-00002-of-00004.safetensors",
36
+ "language_model.model.layers.12.attention_norm.weight": "model-00002-of-00004.safetensors",
37
+ "language_model.model.layers.12.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
38
+ "language_model.model.layers.12.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
39
+ "language_model.model.layers.12.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
40
+ "language_model.model.layers.12.ffn_norm.weight": "model-00002-of-00004.safetensors",
41
+ "language_model.model.layers.13.attention.wo.weight": "model-00002-of-00004.safetensors",
42
+ "language_model.model.layers.13.attention.wqkv.weight": "model-00002-of-00004.safetensors",
43
+ "language_model.model.layers.13.attention_norm.weight": "model-00002-of-00004.safetensors",
44
+ "language_model.model.layers.13.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
45
+ "language_model.model.layers.13.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
46
+ "language_model.model.layers.13.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
47
+ "language_model.model.layers.13.ffn_norm.weight": "model-00002-of-00004.safetensors",
48
+ "language_model.model.layers.14.attention.wo.weight": "model-00002-of-00004.safetensors",
49
+ "language_model.model.layers.14.attention.wqkv.weight": "model-00002-of-00004.safetensors",
50
+ "language_model.model.layers.14.attention_norm.weight": "model-00002-of-00004.safetensors",
51
+ "language_model.model.layers.14.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
52
+ "language_model.model.layers.14.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
53
+ "language_model.model.layers.14.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
54
+ "language_model.model.layers.14.ffn_norm.weight": "model-00002-of-00004.safetensors",
55
+ "language_model.model.layers.15.attention.wo.weight": "model-00002-of-00004.safetensors",
56
+ "language_model.model.layers.15.attention.wqkv.weight": "model-00002-of-00004.safetensors",
57
+ "language_model.model.layers.15.attention_norm.weight": "model-00002-of-00004.safetensors",
58
+ "language_model.model.layers.15.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
59
+ "language_model.model.layers.15.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
60
+ "language_model.model.layers.15.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
61
+ "language_model.model.layers.15.ffn_norm.weight": "model-00002-of-00004.safetensors",
62
+ "language_model.model.layers.16.attention.wo.weight": "model-00002-of-00004.safetensors",
63
+ "language_model.model.layers.16.attention.wqkv.weight": "model-00002-of-00004.safetensors",
64
+ "language_model.model.layers.16.attention_norm.weight": "model-00002-of-00004.safetensors",
65
+ "language_model.model.layers.16.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
66
+ "language_model.model.layers.16.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
67
+ "language_model.model.layers.16.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
68
+ "language_model.model.layers.16.ffn_norm.weight": "model-00002-of-00004.safetensors",
69
+ "language_model.model.layers.17.attention.wo.weight": "model-00002-of-00004.safetensors",
70
+ "language_model.model.layers.17.attention.wqkv.weight": "model-00002-of-00004.safetensors",
71
+ "language_model.model.layers.17.attention_norm.weight": "model-00002-of-00004.safetensors",
72
+ "language_model.model.layers.17.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
73
+ "language_model.model.layers.17.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
74
+ "language_model.model.layers.17.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
75
+ "language_model.model.layers.17.ffn_norm.weight": "model-00002-of-00004.safetensors",
76
+ "language_model.model.layers.18.attention.wo.weight": "model-00002-of-00004.safetensors",
77
+ "language_model.model.layers.18.attention.wqkv.weight": "model-00002-of-00004.safetensors",
78
+ "language_model.model.layers.18.attention_norm.weight": "model-00002-of-00004.safetensors",
79
+ "language_model.model.layers.18.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
80
+ "language_model.model.layers.18.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
81
+ "language_model.model.layers.18.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
82
+ "language_model.model.layers.18.ffn_norm.weight": "model-00002-of-00004.safetensors",
83
+ "language_model.model.layers.19.attention.wo.weight": "model-00002-of-00004.safetensors",
84
+ "language_model.model.layers.19.attention.wqkv.weight": "model-00002-of-00004.safetensors",
85
+ "language_model.model.layers.19.attention_norm.weight": "model-00002-of-00004.safetensors",
86
+ "language_model.model.layers.19.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
87
+ "language_model.model.layers.19.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
88
+ "language_model.model.layers.19.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
89
+ "language_model.model.layers.19.ffn_norm.weight": "model-00002-of-00004.safetensors",
90
+ "language_model.model.layers.2.attention.wo.weight": "model-00001-of-00004.safetensors",
91
+ "language_model.model.layers.2.attention.wqkv.weight": "model-00001-of-00004.safetensors",
92
+ "language_model.model.layers.2.attention_norm.weight": "model-00001-of-00004.safetensors",
93
+ "language_model.model.layers.2.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
94
+ "language_model.model.layers.2.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
95
+ "language_model.model.layers.2.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
96
+ "language_model.model.layers.2.ffn_norm.weight": "model-00001-of-00004.safetensors",
97
+ "language_model.model.layers.20.attention.wo.weight": "model-00002-of-00004.safetensors",
98
+ "language_model.model.layers.20.attention.wqkv.weight": "model-00002-of-00004.safetensors",
99
+ "language_model.model.layers.20.attention_norm.weight": "model-00002-of-00004.safetensors",
100
+ "language_model.model.layers.20.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
101
+ "language_model.model.layers.20.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
102
+ "language_model.model.layers.20.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
103
+ "language_model.model.layers.20.ffn_norm.weight": "model-00002-of-00004.safetensors",
104
+ "language_model.model.layers.21.attention.wo.weight": "model-00002-of-00004.safetensors",
105
+ "language_model.model.layers.21.attention.wqkv.weight": "model-00002-of-00004.safetensors",
106
+ "language_model.model.layers.21.attention_norm.weight": "model-00002-of-00004.safetensors",
107
+ "language_model.model.layers.21.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
108
+ "language_model.model.layers.21.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
109
+ "language_model.model.layers.21.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
110
+ "language_model.model.layers.21.ffn_norm.weight": "model-00002-of-00004.safetensors",
111
+ "language_model.model.layers.22.attention.wo.weight": "model-00002-of-00004.safetensors",
112
+ "language_model.model.layers.22.attention.wqkv.weight": "model-00002-of-00004.safetensors",
113
+ "language_model.model.layers.22.attention_norm.weight": "model-00002-of-00004.safetensors",
114
+ "language_model.model.layers.22.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
115
+ "language_model.model.layers.22.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
116
+ "language_model.model.layers.22.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
117
+ "language_model.model.layers.22.ffn_norm.weight": "model-00002-of-00004.safetensors",
118
+ "language_model.model.layers.23.attention.wo.weight": "model-00002-of-00004.safetensors",
119
+ "language_model.model.layers.23.attention.wqkv.weight": "model-00002-of-00004.safetensors",
120
+ "language_model.model.layers.23.attention_norm.weight": "model-00002-of-00004.safetensors",
121
+ "language_model.model.layers.23.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
122
+ "language_model.model.layers.23.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
123
+ "language_model.model.layers.23.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
124
+ "language_model.model.layers.23.ffn_norm.weight": "model-00002-of-00004.safetensors",
125
+ "language_model.model.layers.24.attention.wo.weight": "model-00002-of-00004.safetensors",
126
+ "language_model.model.layers.24.attention.wqkv.weight": "model-00002-of-00004.safetensors",
127
+ "language_model.model.layers.24.attention_norm.weight": "model-00002-of-00004.safetensors",
128
+ "language_model.model.layers.24.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
129
+ "language_model.model.layers.24.feed_forward.w2.weight": "model-00002-of-00004.safetensors",
130
+ "language_model.model.layers.24.feed_forward.w3.weight": "model-00002-of-00004.safetensors",
131
+ "language_model.model.layers.24.ffn_norm.weight": "model-00002-of-00004.safetensors",
132
+ "language_model.model.layers.25.attention.wo.weight": "model-00002-of-00004.safetensors",
133
+ "language_model.model.layers.25.attention.wqkv.weight": "model-00002-of-00004.safetensors",
134
+ "language_model.model.layers.25.attention_norm.weight": "model-00003-of-00004.safetensors",
135
+ "language_model.model.layers.25.feed_forward.w1.weight": "model-00002-of-00004.safetensors",
136
+ "language_model.model.layers.25.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
137
+ "language_model.model.layers.25.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
138
+ "language_model.model.layers.25.ffn_norm.weight": "model-00003-of-00004.safetensors",
139
+ "language_model.model.layers.26.attention.wo.weight": "model-00003-of-00004.safetensors",
140
+ "language_model.model.layers.26.attention.wqkv.weight": "model-00003-of-00004.safetensors",
141
+ "language_model.model.layers.26.attention_norm.weight": "model-00003-of-00004.safetensors",
142
+ "language_model.model.layers.26.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
143
+ "language_model.model.layers.26.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
144
+ "language_model.model.layers.26.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
145
+ "language_model.model.layers.26.ffn_norm.weight": "model-00003-of-00004.safetensors",
146
+ "language_model.model.layers.27.attention.wo.weight": "model-00003-of-00004.safetensors",
147
+ "language_model.model.layers.27.attention.wqkv.weight": "model-00003-of-00004.safetensors",
148
+ "language_model.model.layers.27.attention_norm.weight": "model-00003-of-00004.safetensors",
149
+ "language_model.model.layers.27.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
150
+ "language_model.model.layers.27.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
151
+ "language_model.model.layers.27.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
152
+ "language_model.model.layers.27.ffn_norm.weight": "model-00003-of-00004.safetensors",
153
+ "language_model.model.layers.28.attention.wo.weight": "model-00003-of-00004.safetensors",
154
+ "language_model.model.layers.28.attention.wqkv.weight": "model-00003-of-00004.safetensors",
155
+ "language_model.model.layers.28.attention_norm.weight": "model-00003-of-00004.safetensors",
156
+ "language_model.model.layers.28.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
157
+ "language_model.model.layers.28.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
158
+ "language_model.model.layers.28.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
159
+ "language_model.model.layers.28.ffn_norm.weight": "model-00003-of-00004.safetensors",
160
+ "language_model.model.layers.29.attention.wo.weight": "model-00003-of-00004.safetensors",
161
+ "language_model.model.layers.29.attention.wqkv.weight": "model-00003-of-00004.safetensors",
162
+ "language_model.model.layers.29.attention_norm.weight": "model-00003-of-00004.safetensors",
163
+ "language_model.model.layers.29.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
164
+ "language_model.model.layers.29.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
165
+ "language_model.model.layers.29.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
166
+ "language_model.model.layers.29.ffn_norm.weight": "model-00003-of-00004.safetensors",
167
+ "language_model.model.layers.3.attention.wo.weight": "model-00001-of-00004.safetensors",
168
+ "language_model.model.layers.3.attention.wqkv.weight": "model-00001-of-00004.safetensors",
169
+ "language_model.model.layers.3.attention_norm.weight": "model-00001-of-00004.safetensors",
170
+ "language_model.model.layers.3.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
171
+ "language_model.model.layers.3.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
172
+ "language_model.model.layers.3.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
173
+ "language_model.model.layers.3.ffn_norm.weight": "model-00001-of-00004.safetensors",
174
+ "language_model.model.layers.30.attention.wo.weight": "model-00003-of-00004.safetensors",
175
+ "language_model.model.layers.30.attention.wqkv.weight": "model-00003-of-00004.safetensors",
176
+ "language_model.model.layers.30.attention_norm.weight": "model-00003-of-00004.safetensors",
177
+ "language_model.model.layers.30.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
178
+ "language_model.model.layers.30.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
179
+ "language_model.model.layers.30.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
180
+ "language_model.model.layers.30.ffn_norm.weight": "model-00003-of-00004.safetensors",
181
+ "language_model.model.layers.31.attention.wo.weight": "model-00003-of-00004.safetensors",
182
+ "language_model.model.layers.31.attention.wqkv.weight": "model-00003-of-00004.safetensors",
183
+ "language_model.model.layers.31.attention_norm.weight": "model-00003-of-00004.safetensors",
184
+ "language_model.model.layers.31.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
185
+ "language_model.model.layers.31.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
186
+ "language_model.model.layers.31.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
187
+ "language_model.model.layers.31.ffn_norm.weight": "model-00003-of-00004.safetensors",
188
+ "language_model.model.layers.32.attention.wo.weight": "model-00003-of-00004.safetensors",
189
+ "language_model.model.layers.32.attention.wqkv.weight": "model-00003-of-00004.safetensors",
190
+ "language_model.model.layers.32.attention_norm.weight": "model-00003-of-00004.safetensors",
191
+ "language_model.model.layers.32.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
192
+ "language_model.model.layers.32.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
193
+ "language_model.model.layers.32.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
194
+ "language_model.model.layers.32.ffn_norm.weight": "model-00003-of-00004.safetensors",
195
+ "language_model.model.layers.33.attention.wo.weight": "model-00003-of-00004.safetensors",
196
+ "language_model.model.layers.33.attention.wqkv.weight": "model-00003-of-00004.safetensors",
197
+ "language_model.model.layers.33.attention_norm.weight": "model-00003-of-00004.safetensors",
198
+ "language_model.model.layers.33.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
199
+ "language_model.model.layers.33.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
200
+ "language_model.model.layers.33.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
201
+ "language_model.model.layers.33.ffn_norm.weight": "model-00003-of-00004.safetensors",
202
+ "language_model.model.layers.34.attention.wo.weight": "model-00003-of-00004.safetensors",
203
+ "language_model.model.layers.34.attention.wqkv.weight": "model-00003-of-00004.safetensors",
204
+ "language_model.model.layers.34.attention_norm.weight": "model-00003-of-00004.safetensors",
205
+ "language_model.model.layers.34.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
206
+ "language_model.model.layers.34.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
207
+ "language_model.model.layers.34.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
208
+ "language_model.model.layers.34.ffn_norm.weight": "model-00003-of-00004.safetensors",
209
+ "language_model.model.layers.35.attention.wo.weight": "model-00003-of-00004.safetensors",
210
+ "language_model.model.layers.35.attention.wqkv.weight": "model-00003-of-00004.safetensors",
211
+ "language_model.model.layers.35.attention_norm.weight": "model-00003-of-00004.safetensors",
212
+ "language_model.model.layers.35.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
213
+ "language_model.model.layers.35.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
214
+ "language_model.model.layers.35.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
215
+ "language_model.model.layers.35.ffn_norm.weight": "model-00003-of-00004.safetensors",
216
+ "language_model.model.layers.36.attention.wo.weight": "model-00003-of-00004.safetensors",
217
+ "language_model.model.layers.36.attention.wqkv.weight": "model-00003-of-00004.safetensors",
218
+ "language_model.model.layers.36.attention_norm.weight": "model-00003-of-00004.safetensors",
219
+ "language_model.model.layers.36.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
220
+ "language_model.model.layers.36.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
221
+ "language_model.model.layers.36.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
222
+ "language_model.model.layers.36.ffn_norm.weight": "model-00003-of-00004.safetensors",
223
+ "language_model.model.layers.37.attention.wo.weight": "model-00003-of-00004.safetensors",
224
+ "language_model.model.layers.37.attention.wqkv.weight": "model-00003-of-00004.safetensors",
225
+ "language_model.model.layers.37.attention_norm.weight": "model-00003-of-00004.safetensors",
226
+ "language_model.model.layers.37.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
227
+ "language_model.model.layers.37.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
228
+ "language_model.model.layers.37.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
229
+ "language_model.model.layers.37.ffn_norm.weight": "model-00003-of-00004.safetensors",
230
+ "language_model.model.layers.38.attention.wo.weight": "model-00003-of-00004.safetensors",
231
+ "language_model.model.layers.38.attention.wqkv.weight": "model-00003-of-00004.safetensors",
232
+ "language_model.model.layers.38.attention_norm.weight": "model-00003-of-00004.safetensors",
233
+ "language_model.model.layers.38.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
234
+ "language_model.model.layers.38.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
235
+ "language_model.model.layers.38.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
236
+ "language_model.model.layers.38.ffn_norm.weight": "model-00003-of-00004.safetensors",
237
+ "language_model.model.layers.39.attention.wo.weight": "model-00003-of-00004.safetensors",
238
+ "language_model.model.layers.39.attention.wqkv.weight": "model-00003-of-00004.safetensors",
239
+ "language_model.model.layers.39.attention_norm.weight": "model-00003-of-00004.safetensors",
240
+ "language_model.model.layers.39.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
241
+ "language_model.model.layers.39.feed_forward.w2.weight": "model-00003-of-00004.safetensors",
242
+ "language_model.model.layers.39.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
243
+ "language_model.model.layers.39.ffn_norm.weight": "model-00003-of-00004.safetensors",
244
+ "language_model.model.layers.4.attention.wo.weight": "model-00001-of-00004.safetensors",
245
+ "language_model.model.layers.4.attention.wqkv.weight": "model-00001-of-00004.safetensors",
246
+ "language_model.model.layers.4.attention_norm.weight": "model-00001-of-00004.safetensors",
247
+ "language_model.model.layers.4.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
248
+ "language_model.model.layers.4.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
249
+ "language_model.model.layers.4.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
250
+ "language_model.model.layers.4.ffn_norm.weight": "model-00001-of-00004.safetensors",
251
+ "language_model.model.layers.40.attention.wo.weight": "model-00003-of-00004.safetensors",
252
+ "language_model.model.layers.40.attention.wqkv.weight": "model-00003-of-00004.safetensors",
253
+ "language_model.model.layers.40.attention_norm.weight": "model-00004-of-00004.safetensors",
254
+ "language_model.model.layers.40.feed_forward.w1.weight": "model-00003-of-00004.safetensors",
255
+ "language_model.model.layers.40.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
256
+ "language_model.model.layers.40.feed_forward.w3.weight": "model-00003-of-00004.safetensors",
257
+ "language_model.model.layers.40.ffn_norm.weight": "model-00004-of-00004.safetensors",
258
+ "language_model.model.layers.41.attention.wo.weight": "model-00004-of-00004.safetensors",
259
+ "language_model.model.layers.41.attention.wqkv.weight": "model-00004-of-00004.safetensors",
260
+ "language_model.model.layers.41.attention_norm.weight": "model-00004-of-00004.safetensors",
261
+ "language_model.model.layers.41.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
262
+ "language_model.model.layers.41.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
263
+ "language_model.model.layers.41.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
264
+ "language_model.model.layers.41.ffn_norm.weight": "model-00004-of-00004.safetensors",
265
+ "language_model.model.layers.42.attention.wo.weight": "model-00004-of-00004.safetensors",
266
+ "language_model.model.layers.42.attention.wqkv.weight": "model-00004-of-00004.safetensors",
267
+ "language_model.model.layers.42.attention_norm.weight": "model-00004-of-00004.safetensors",
268
+ "language_model.model.layers.42.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
269
+ "language_model.model.layers.42.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
270
+ "language_model.model.layers.42.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
271
+ "language_model.model.layers.42.ffn_norm.weight": "model-00004-of-00004.safetensors",
272
+ "language_model.model.layers.43.attention.wo.weight": "model-00004-of-00004.safetensors",
273
+ "language_model.model.layers.43.attention.wqkv.weight": "model-00004-of-00004.safetensors",
274
+ "language_model.model.layers.43.attention_norm.weight": "model-00004-of-00004.safetensors",
275
+ "language_model.model.layers.43.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
276
+ "language_model.model.layers.43.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
277
+ "language_model.model.layers.43.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
278
+ "language_model.model.layers.43.ffn_norm.weight": "model-00004-of-00004.safetensors",
279
+ "language_model.model.layers.44.attention.wo.weight": "model-00004-of-00004.safetensors",
280
+ "language_model.model.layers.44.attention.wqkv.weight": "model-00004-of-00004.safetensors",
281
+ "language_model.model.layers.44.attention_norm.weight": "model-00004-of-00004.safetensors",
282
+ "language_model.model.layers.44.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
283
+ "language_model.model.layers.44.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
284
+ "language_model.model.layers.44.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
285
+ "language_model.model.layers.44.ffn_norm.weight": "model-00004-of-00004.safetensors",
286
+ "language_model.model.layers.45.attention.wo.weight": "model-00004-of-00004.safetensors",
287
+ "language_model.model.layers.45.attention.wqkv.weight": "model-00004-of-00004.safetensors",
288
+ "language_model.model.layers.45.attention_norm.weight": "model-00004-of-00004.safetensors",
289
+ "language_model.model.layers.45.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
290
+ "language_model.model.layers.45.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
291
+ "language_model.model.layers.45.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
292
+ "language_model.model.layers.45.ffn_norm.weight": "model-00004-of-00004.safetensors",
293
+ "language_model.model.layers.46.attention.wo.weight": "model-00004-of-00004.safetensors",
294
+ "language_model.model.layers.46.attention.wqkv.weight": "model-00004-of-00004.safetensors",
295
+ "language_model.model.layers.46.attention_norm.weight": "model-00004-of-00004.safetensors",
296
+ "language_model.model.layers.46.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
297
+ "language_model.model.layers.46.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
298
+ "language_model.model.layers.46.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
299
+ "language_model.model.layers.46.ffn_norm.weight": "model-00004-of-00004.safetensors",
300
+ "language_model.model.layers.47.attention.wo.weight": "model-00004-of-00004.safetensors",
301
+ "language_model.model.layers.47.attention.wqkv.weight": "model-00004-of-00004.safetensors",
302
+ "language_model.model.layers.47.attention_norm.weight": "model-00004-of-00004.safetensors",
303
+ "language_model.model.layers.47.feed_forward.w1.weight": "model-00004-of-00004.safetensors",
304
+ "language_model.model.layers.47.feed_forward.w2.weight": "model-00004-of-00004.safetensors",
305
+ "language_model.model.layers.47.feed_forward.w3.weight": "model-00004-of-00004.safetensors",
306
+ "language_model.model.layers.47.ffn_norm.weight": "model-00004-of-00004.safetensors",
307
+ "language_model.model.layers.5.attention.wo.weight": "model-00001-of-00004.safetensors",
308
+ "language_model.model.layers.5.attention.wqkv.weight": "model-00001-of-00004.safetensors",
309
+ "language_model.model.layers.5.attention_norm.weight": "model-00001-of-00004.safetensors",
310
+ "language_model.model.layers.5.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
311
+ "language_model.model.layers.5.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
312
+ "language_model.model.layers.5.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
313
+ "language_model.model.layers.5.ffn_norm.weight": "model-00001-of-00004.safetensors",
314
+ "language_model.model.layers.6.attention.wo.weight": "model-00001-of-00004.safetensors",
315
+ "language_model.model.layers.6.attention.wqkv.weight": "model-00001-of-00004.safetensors",
316
+ "language_model.model.layers.6.attention_norm.weight": "model-00001-of-00004.safetensors",
317
+ "language_model.model.layers.6.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
318
+ "language_model.model.layers.6.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
319
+ "language_model.model.layers.6.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
320
+ "language_model.model.layers.6.ffn_norm.weight": "model-00001-of-00004.safetensors",
321
+ "language_model.model.layers.7.attention.wo.weight": "model-00001-of-00004.safetensors",
322
+ "language_model.model.layers.7.attention.wqkv.weight": "model-00001-of-00004.safetensors",
323
+ "language_model.model.layers.7.attention_norm.weight": "model-00001-of-00004.safetensors",
324
+ "language_model.model.layers.7.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
325
+ "language_model.model.layers.7.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
326
+ "language_model.model.layers.7.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
327
+ "language_model.model.layers.7.ffn_norm.weight": "model-00001-of-00004.safetensors",
328
+ "language_model.model.layers.8.attention.wo.weight": "model-00001-of-00004.safetensors",
329
+ "language_model.model.layers.8.attention.wqkv.weight": "model-00001-of-00004.safetensors",
330
+ "language_model.model.layers.8.attention_norm.weight": "model-00001-of-00004.safetensors",
331
+ "language_model.model.layers.8.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
332
+ "language_model.model.layers.8.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
333
+ "language_model.model.layers.8.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
334
+ "language_model.model.layers.8.ffn_norm.weight": "model-00001-of-00004.safetensors",
335
+ "language_model.model.layers.9.attention.wo.weight": "model-00001-of-00004.safetensors",
336
+ "language_model.model.layers.9.attention.wqkv.weight": "model-00001-of-00004.safetensors",
337
+ "language_model.model.layers.9.attention_norm.weight": "model-00001-of-00004.safetensors",
338
+ "language_model.model.layers.9.feed_forward.w1.weight": "model-00001-of-00004.safetensors",
339
+ "language_model.model.layers.9.feed_forward.w2.weight": "model-00001-of-00004.safetensors",
340
+ "language_model.model.layers.9.feed_forward.w3.weight": "model-00001-of-00004.safetensors",
341
+ "language_model.model.layers.9.ffn_norm.weight": "model-00001-of-00004.safetensors",
342
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors",
343
+ "language_model.model.tok_embeddings.weight": "model-00001-of-00004.safetensors",
344
+ "language_model.output.weight": "model-00004-of-00004.safetensors",
345
+ "mlp1.0.bias": "model-00004-of-00004.safetensors",
346
+ "mlp1.0.weight": "model-00004-of-00004.safetensors",
347
+ "mlp1.1.bias": "model-00004-of-00004.safetensors",
348
+ "mlp1.1.weight": "model-00004-of-00004.safetensors",
349
+ "mlp1.3.bias": "model-00004-of-00004.safetensors",
350
+ "mlp1.3.weight": "model-00004-of-00004.safetensors",
351
+ "vision_model.embeddings.class_embedding": "model-00001-of-00004.safetensors",
352
+ "vision_model.embeddings.patch_embedding.bias": "model-00001-of-00004.safetensors",
353
+ "vision_model.embeddings.patch_embedding.weight": "model-00001-of-00004.safetensors",
354
+ "vision_model.embeddings.position_embedding": "model-00001-of-00004.safetensors",
355
+ "vision_model.encoder.layers.0.attn.proj.bias": "model-00001-of-00004.safetensors",
356
+ "vision_model.encoder.layers.0.attn.proj.weight": "model-00001-of-00004.safetensors",
357
+ "vision_model.encoder.layers.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
358
+ "vision_model.encoder.layers.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
359
+ "vision_model.encoder.layers.0.ls1": "model-00001-of-00004.safetensors",
360
+ "vision_model.encoder.layers.0.ls2": "model-00001-of-00004.safetensors",
361
+ "vision_model.encoder.layers.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
362
+ "vision_model.encoder.layers.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
363
+ "vision_model.encoder.layers.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
364
+ "vision_model.encoder.layers.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
365
+ "vision_model.encoder.layers.0.norm1.bias": "model-00001-of-00004.safetensors",
366
+ "vision_model.encoder.layers.0.norm1.weight": "model-00001-of-00004.safetensors",
367
+ "vision_model.encoder.layers.0.norm2.bias": "model-00001-of-00004.safetensors",
368
+ "vision_model.encoder.layers.0.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "vision_model.encoder.layers.1.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "vision_model.encoder.layers.1.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "vision_model.encoder.layers.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "vision_model.encoder.layers.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "vision_model.encoder.layers.1.ls1": "model-00001-of-00004.safetensors",
374
+ "vision_model.encoder.layers.1.ls2": "model-00001-of-00004.safetensors",
375
+ "vision_model.encoder.layers.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
376
+ "vision_model.encoder.layers.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
377
+ "vision_model.encoder.layers.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
378
+ "vision_model.encoder.layers.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
379
+ "vision_model.encoder.layers.1.norm1.bias": "model-00001-of-00004.safetensors",
380
+ "vision_model.encoder.layers.1.norm1.weight": "model-00001-of-00004.safetensors",
381
+ "vision_model.encoder.layers.1.norm2.bias": "model-00001-of-00004.safetensors",
382
+ "vision_model.encoder.layers.1.norm2.weight": "model-00001-of-00004.safetensors",
383
+ "vision_model.encoder.layers.10.attn.proj.bias": "model-00001-of-00004.safetensors",
384
+ "vision_model.encoder.layers.10.attn.proj.weight": "model-00001-of-00004.safetensors",
385
+ "vision_model.encoder.layers.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
386
+ "vision_model.encoder.layers.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
387
+ "vision_model.encoder.layers.10.ls1": "model-00001-of-00004.safetensors",
388
+ "vision_model.encoder.layers.10.ls2": "model-00001-of-00004.safetensors",
389
+ "vision_model.encoder.layers.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
390
+ "vision_model.encoder.layers.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
391
+ "vision_model.encoder.layers.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
392
+ "vision_model.encoder.layers.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
393
+ "vision_model.encoder.layers.10.norm1.bias": "model-00001-of-00004.safetensors",
394
+ "vision_model.encoder.layers.10.norm1.weight": "model-00001-of-00004.safetensors",
395
+ "vision_model.encoder.layers.10.norm2.bias": "model-00001-of-00004.safetensors",
396
+ "vision_model.encoder.layers.10.norm2.weight": "model-00001-of-00004.safetensors",
397
+ "vision_model.encoder.layers.11.attn.proj.bias": "model-00001-of-00004.safetensors",
398
+ "vision_model.encoder.layers.11.attn.proj.weight": "model-00001-of-00004.safetensors",
399
+ "vision_model.encoder.layers.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
400
+ "vision_model.encoder.layers.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
401
+ "vision_model.encoder.layers.11.ls1": "model-00001-of-00004.safetensors",
402
+ "vision_model.encoder.layers.11.ls2": "model-00001-of-00004.safetensors",
403
+ "vision_model.encoder.layers.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
404
+ "vision_model.encoder.layers.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
405
+ "vision_model.encoder.layers.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
406
+ "vision_model.encoder.layers.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
407
+ "vision_model.encoder.layers.11.norm1.bias": "model-00001-of-00004.safetensors",
408
+ "vision_model.encoder.layers.11.norm1.weight": "model-00001-of-00004.safetensors",
409
+ "vision_model.encoder.layers.11.norm2.bias": "model-00001-of-00004.safetensors",
410
+ "vision_model.encoder.layers.11.norm2.weight": "model-00001-of-00004.safetensors",
411
+ "vision_model.encoder.layers.12.attn.proj.bias": "model-00001-of-00004.safetensors",
412
+ "vision_model.encoder.layers.12.attn.proj.weight": "model-00001-of-00004.safetensors",
413
+ "vision_model.encoder.layers.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
414
+ "vision_model.encoder.layers.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
415
+ "vision_model.encoder.layers.12.ls1": "model-00001-of-00004.safetensors",
416
+ "vision_model.encoder.layers.12.ls2": "model-00001-of-00004.safetensors",
417
+ "vision_model.encoder.layers.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
418
+ "vision_model.encoder.layers.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
419
+ "vision_model.encoder.layers.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
420
+ "vision_model.encoder.layers.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
421
+ "vision_model.encoder.layers.12.norm1.bias": "model-00001-of-00004.safetensors",
422
+ "vision_model.encoder.layers.12.norm1.weight": "model-00001-of-00004.safetensors",
423
+ "vision_model.encoder.layers.12.norm2.bias": "model-00001-of-00004.safetensors",
424
+ "vision_model.encoder.layers.12.norm2.weight": "model-00001-of-00004.safetensors",
425
+ "vision_model.encoder.layers.13.attn.proj.bias": "model-00001-of-00004.safetensors",
426
+ "vision_model.encoder.layers.13.attn.proj.weight": "model-00001-of-00004.safetensors",
427
+ "vision_model.encoder.layers.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
428
+ "vision_model.encoder.layers.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
429
+ "vision_model.encoder.layers.13.ls1": "model-00001-of-00004.safetensors",
430
+ "vision_model.encoder.layers.13.ls2": "model-00001-of-00004.safetensors",
431
+ "vision_model.encoder.layers.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
432
+ "vision_model.encoder.layers.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
433
+ "vision_model.encoder.layers.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
434
+ "vision_model.encoder.layers.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
435
+ "vision_model.encoder.layers.13.norm1.bias": "model-00001-of-00004.safetensors",
436
+ "vision_model.encoder.layers.13.norm1.weight": "model-00001-of-00004.safetensors",
437
+ "vision_model.encoder.layers.13.norm2.bias": "model-00001-of-00004.safetensors",
438
+ "vision_model.encoder.layers.13.norm2.weight": "model-00001-of-00004.safetensors",
439
+ "vision_model.encoder.layers.14.attn.proj.bias": "model-00001-of-00004.safetensors",
440
+ "vision_model.encoder.layers.14.attn.proj.weight": "model-00001-of-00004.safetensors",
441
+ "vision_model.encoder.layers.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
442
+ "vision_model.encoder.layers.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
443
+ "vision_model.encoder.layers.14.ls1": "model-00001-of-00004.safetensors",
444
+ "vision_model.encoder.layers.14.ls2": "model-00001-of-00004.safetensors",
445
+ "vision_model.encoder.layers.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
446
+ "vision_model.encoder.layers.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
447
+ "vision_model.encoder.layers.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
448
+ "vision_model.encoder.layers.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
449
+ "vision_model.encoder.layers.14.norm1.bias": "model-00001-of-00004.safetensors",
450
+ "vision_model.encoder.layers.14.norm1.weight": "model-00001-of-00004.safetensors",
451
+ "vision_model.encoder.layers.14.norm2.bias": "model-00001-of-00004.safetensors",
452
+ "vision_model.encoder.layers.14.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "vision_model.encoder.layers.15.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "vision_model.encoder.layers.15.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "vision_model.encoder.layers.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "vision_model.encoder.layers.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "vision_model.encoder.layers.15.ls1": "model-00001-of-00004.safetensors",
458
+ "vision_model.encoder.layers.15.ls2": "model-00001-of-00004.safetensors",
459
+ "vision_model.encoder.layers.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
460
+ "vision_model.encoder.layers.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
461
+ "vision_model.encoder.layers.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
462
+ "vision_model.encoder.layers.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
463
+ "vision_model.encoder.layers.15.norm1.bias": "model-00001-of-00004.safetensors",
464
+ "vision_model.encoder.layers.15.norm1.weight": "model-00001-of-00004.safetensors",
465
+ "vision_model.encoder.layers.15.norm2.bias": "model-00001-of-00004.safetensors",
466
+ "vision_model.encoder.layers.15.norm2.weight": "model-00001-of-00004.safetensors",
467
+ "vision_model.encoder.layers.16.attn.proj.bias": "model-00001-of-00004.safetensors",
468
+ "vision_model.encoder.layers.16.attn.proj.weight": "model-00001-of-00004.safetensors",
469
+ "vision_model.encoder.layers.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
470
+ "vision_model.encoder.layers.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
471
+ "vision_model.encoder.layers.16.ls1": "model-00001-of-00004.safetensors",
472
+ "vision_model.encoder.layers.16.ls2": "model-00001-of-00004.safetensors",
473
+ "vision_model.encoder.layers.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
474
+ "vision_model.encoder.layers.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
475
+ "vision_model.encoder.layers.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
476
+ "vision_model.encoder.layers.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
477
+ "vision_model.encoder.layers.16.norm1.bias": "model-00001-of-00004.safetensors",
478
+ "vision_model.encoder.layers.16.norm1.weight": "model-00001-of-00004.safetensors",
479
+ "vision_model.encoder.layers.16.norm2.bias": "model-00001-of-00004.safetensors",
480
+ "vision_model.encoder.layers.16.norm2.weight": "model-00001-of-00004.safetensors",
481
+ "vision_model.encoder.layers.17.attn.proj.bias": "model-00001-of-00004.safetensors",
482
+ "vision_model.encoder.layers.17.attn.proj.weight": "model-00001-of-00004.safetensors",
483
+ "vision_model.encoder.layers.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
484
+ "vision_model.encoder.layers.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
485
+ "vision_model.encoder.layers.17.ls1": "model-00001-of-00004.safetensors",
486
+ "vision_model.encoder.layers.17.ls2": "model-00001-of-00004.safetensors",
487
+ "vision_model.encoder.layers.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
488
+ "vision_model.encoder.layers.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
489
+ "vision_model.encoder.layers.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
490
+ "vision_model.encoder.layers.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
491
+ "vision_model.encoder.layers.17.norm1.bias": "model-00001-of-00004.safetensors",
492
+ "vision_model.encoder.layers.17.norm1.weight": "model-00001-of-00004.safetensors",
493
+ "vision_model.encoder.layers.17.norm2.bias": "model-00001-of-00004.safetensors",
494
+ "vision_model.encoder.layers.17.norm2.weight": "model-00001-of-00004.safetensors",
495
+ "vision_model.encoder.layers.18.attn.proj.bias": "model-00001-of-00004.safetensors",
496
+ "vision_model.encoder.layers.18.attn.proj.weight": "model-00001-of-00004.safetensors",
497
+ "vision_model.encoder.layers.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
498
+ "vision_model.encoder.layers.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
499
+ "vision_model.encoder.layers.18.ls1": "model-00001-of-00004.safetensors",
500
+ "vision_model.encoder.layers.18.ls2": "model-00001-of-00004.safetensors",
501
+ "vision_model.encoder.layers.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
502
+ "vision_model.encoder.layers.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
503
+ "vision_model.encoder.layers.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
504
+ "vision_model.encoder.layers.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
505
+ "vision_model.encoder.layers.18.norm1.bias": "model-00001-of-00004.safetensors",
506
+ "vision_model.encoder.layers.18.norm1.weight": "model-00001-of-00004.safetensors",
507
+ "vision_model.encoder.layers.18.norm2.bias": "model-00001-of-00004.safetensors",
508
+ "vision_model.encoder.layers.18.norm2.weight": "model-00001-of-00004.safetensors",
509
+ "vision_model.encoder.layers.19.attn.proj.bias": "model-00001-of-00004.safetensors",
510
+ "vision_model.encoder.layers.19.attn.proj.weight": "model-00001-of-00004.safetensors",
511
+ "vision_model.encoder.layers.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
512
+ "vision_model.encoder.layers.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
513
+ "vision_model.encoder.layers.19.ls1": "model-00001-of-00004.safetensors",
514
+ "vision_model.encoder.layers.19.ls2": "model-00001-of-00004.safetensors",
515
+ "vision_model.encoder.layers.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
516
+ "vision_model.encoder.layers.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
517
+ "vision_model.encoder.layers.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
518
+ "vision_model.encoder.layers.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
519
+ "vision_model.encoder.layers.19.norm1.bias": "model-00001-of-00004.safetensors",
520
+ "vision_model.encoder.layers.19.norm1.weight": "model-00001-of-00004.safetensors",
521
+ "vision_model.encoder.layers.19.norm2.bias": "model-00001-of-00004.safetensors",
522
+ "vision_model.encoder.layers.19.norm2.weight": "model-00001-of-00004.safetensors",
523
+ "vision_model.encoder.layers.2.attn.proj.bias": "model-00001-of-00004.safetensors",
524
+ "vision_model.encoder.layers.2.attn.proj.weight": "model-00001-of-00004.safetensors",
525
+ "vision_model.encoder.layers.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
526
+ "vision_model.encoder.layers.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
527
+ "vision_model.encoder.layers.2.ls1": "model-00001-of-00004.safetensors",
528
+ "vision_model.encoder.layers.2.ls2": "model-00001-of-00004.safetensors",
529
+ "vision_model.encoder.layers.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
530
+ "vision_model.encoder.layers.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
531
+ "vision_model.encoder.layers.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
532
+ "vision_model.encoder.layers.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
533
+ "vision_model.encoder.layers.2.norm1.bias": "model-00001-of-00004.safetensors",
534
+ "vision_model.encoder.layers.2.norm1.weight": "model-00001-of-00004.safetensors",
535
+ "vision_model.encoder.layers.2.norm2.bias": "model-00001-of-00004.safetensors",
536
+ "vision_model.encoder.layers.2.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "vision_model.encoder.layers.20.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "vision_model.encoder.layers.20.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "vision_model.encoder.layers.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "vision_model.encoder.layers.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "vision_model.encoder.layers.20.ls1": "model-00001-of-00004.safetensors",
542
+ "vision_model.encoder.layers.20.ls2": "model-00001-of-00004.safetensors",
543
+ "vision_model.encoder.layers.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
544
+ "vision_model.encoder.layers.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
545
+ "vision_model.encoder.layers.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
546
+ "vision_model.encoder.layers.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
547
+ "vision_model.encoder.layers.20.norm1.bias": "model-00001-of-00004.safetensors",
548
+ "vision_model.encoder.layers.20.norm1.weight": "model-00001-of-00004.safetensors",
549
+ "vision_model.encoder.layers.20.norm2.bias": "model-00001-of-00004.safetensors",
550
+ "vision_model.encoder.layers.20.norm2.weight": "model-00001-of-00004.safetensors",
551
+ "vision_model.encoder.layers.21.attn.proj.bias": "model-00001-of-00004.safetensors",
552
+ "vision_model.encoder.layers.21.attn.proj.weight": "model-00001-of-00004.safetensors",
553
+ "vision_model.encoder.layers.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
554
+ "vision_model.encoder.layers.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
555
+ "vision_model.encoder.layers.21.ls1": "model-00001-of-00004.safetensors",
556
+ "vision_model.encoder.layers.21.ls2": "model-00001-of-00004.safetensors",
557
+ "vision_model.encoder.layers.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
558
+ "vision_model.encoder.layers.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
559
+ "vision_model.encoder.layers.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
560
+ "vision_model.encoder.layers.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
561
+ "vision_model.encoder.layers.21.norm1.bias": "model-00001-of-00004.safetensors",
562
+ "vision_model.encoder.layers.21.norm1.weight": "model-00001-of-00004.safetensors",
563
+ "vision_model.encoder.layers.21.norm2.bias": "model-00001-of-00004.safetensors",
564
+ "vision_model.encoder.layers.21.norm2.weight": "model-00001-of-00004.safetensors",
565
+ "vision_model.encoder.layers.22.attn.proj.bias": "model-00001-of-00004.safetensors",
566
+ "vision_model.encoder.layers.22.attn.proj.weight": "model-00001-of-00004.safetensors",
567
+ "vision_model.encoder.layers.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
568
+ "vision_model.encoder.layers.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
569
+ "vision_model.encoder.layers.22.ls1": "model-00001-of-00004.safetensors",
570
+ "vision_model.encoder.layers.22.ls2": "model-00001-of-00004.safetensors",
571
+ "vision_model.encoder.layers.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
572
+ "vision_model.encoder.layers.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
573
+ "vision_model.encoder.layers.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
574
+ "vision_model.encoder.layers.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
575
+ "vision_model.encoder.layers.22.norm1.bias": "model-00001-of-00004.safetensors",
576
+ "vision_model.encoder.layers.22.norm1.weight": "model-00001-of-00004.safetensors",
577
+ "vision_model.encoder.layers.22.norm2.bias": "model-00001-of-00004.safetensors",
578
+ "vision_model.encoder.layers.22.norm2.weight": "model-00001-of-00004.safetensors",
579
+ "vision_model.encoder.layers.23.attn.proj.bias": "model-00001-of-00004.safetensors",
580
+ "vision_model.encoder.layers.23.attn.proj.weight": "model-00001-of-00004.safetensors",
581
+ "vision_model.encoder.layers.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
582
+ "vision_model.encoder.layers.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
583
+ "vision_model.encoder.layers.23.ls1": "model-00001-of-00004.safetensors",
584
+ "vision_model.encoder.layers.23.ls2": "model-00001-of-00004.safetensors",
585
+ "vision_model.encoder.layers.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
586
+ "vision_model.encoder.layers.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
587
+ "vision_model.encoder.layers.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
588
+ "vision_model.encoder.layers.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
589
+ "vision_model.encoder.layers.23.norm1.bias": "model-00001-of-00004.safetensors",
590
+ "vision_model.encoder.layers.23.norm1.weight": "model-00001-of-00004.safetensors",
591
+ "vision_model.encoder.layers.23.norm2.bias": "model-00001-of-00004.safetensors",
592
+ "vision_model.encoder.layers.23.norm2.weight": "model-00001-of-00004.safetensors",
593
+ "vision_model.encoder.layers.3.attn.proj.bias": "model-00001-of-00004.safetensors",
594
+ "vision_model.encoder.layers.3.attn.proj.weight": "model-00001-of-00004.safetensors",
595
+ "vision_model.encoder.layers.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
596
+ "vision_model.encoder.layers.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
597
+ "vision_model.encoder.layers.3.ls1": "model-00001-of-00004.safetensors",
598
+ "vision_model.encoder.layers.3.ls2": "model-00001-of-00004.safetensors",
599
+ "vision_model.encoder.layers.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
600
+ "vision_model.encoder.layers.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
601
+ "vision_model.encoder.layers.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
602
+ "vision_model.encoder.layers.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
603
+ "vision_model.encoder.layers.3.norm1.bias": "model-00001-of-00004.safetensors",
604
+ "vision_model.encoder.layers.3.norm1.weight": "model-00001-of-00004.safetensors",
605
+ "vision_model.encoder.layers.3.norm2.bias": "model-00001-of-00004.safetensors",
606
+ "vision_model.encoder.layers.3.norm2.weight": "model-00001-of-00004.safetensors",
607
+ "vision_model.encoder.layers.4.attn.proj.bias": "model-00001-of-00004.safetensors",
608
+ "vision_model.encoder.layers.4.attn.proj.weight": "model-00001-of-00004.safetensors",
609
+ "vision_model.encoder.layers.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
610
+ "vision_model.encoder.layers.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
611
+ "vision_model.encoder.layers.4.ls1": "model-00001-of-00004.safetensors",
612
+ "vision_model.encoder.layers.4.ls2": "model-00001-of-00004.safetensors",
613
+ "vision_model.encoder.layers.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
614
+ "vision_model.encoder.layers.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
615
+ "vision_model.encoder.layers.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
616
+ "vision_model.encoder.layers.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
617
+ "vision_model.encoder.layers.4.norm1.bias": "model-00001-of-00004.safetensors",
618
+ "vision_model.encoder.layers.4.norm1.weight": "model-00001-of-00004.safetensors",
619
+ "vision_model.encoder.layers.4.norm2.bias": "model-00001-of-00004.safetensors",
620
+ "vision_model.encoder.layers.4.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "vision_model.encoder.layers.5.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "vision_model.encoder.layers.5.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "vision_model.encoder.layers.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "vision_model.encoder.layers.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "vision_model.encoder.layers.5.ls1": "model-00001-of-00004.safetensors",
626
+ "vision_model.encoder.layers.5.ls2": "model-00001-of-00004.safetensors",
627
+ "vision_model.encoder.layers.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
628
+ "vision_model.encoder.layers.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
629
+ "vision_model.encoder.layers.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
630
+ "vision_model.encoder.layers.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
631
+ "vision_model.encoder.layers.5.norm1.bias": "model-00001-of-00004.safetensors",
632
+ "vision_model.encoder.layers.5.norm1.weight": "model-00001-of-00004.safetensors",
633
+ "vision_model.encoder.layers.5.norm2.bias": "model-00001-of-00004.safetensors",
634
+ "vision_model.encoder.layers.5.norm2.weight": "model-00001-of-00004.safetensors",
635
+ "vision_model.encoder.layers.6.attn.proj.bias": "model-00001-of-00004.safetensors",
636
+ "vision_model.encoder.layers.6.attn.proj.weight": "model-00001-of-00004.safetensors",
637
+ "vision_model.encoder.layers.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
638
+ "vision_model.encoder.layers.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
639
+ "vision_model.encoder.layers.6.ls1": "model-00001-of-00004.safetensors",
640
+ "vision_model.encoder.layers.6.ls2": "model-00001-of-00004.safetensors",
641
+ "vision_model.encoder.layers.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
642
+ "vision_model.encoder.layers.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
643
+ "vision_model.encoder.layers.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
644
+ "vision_model.encoder.layers.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
645
+ "vision_model.encoder.layers.6.norm1.bias": "model-00001-of-00004.safetensors",
646
+ "vision_model.encoder.layers.6.norm1.weight": "model-00001-of-00004.safetensors",
647
+ "vision_model.encoder.layers.6.norm2.bias": "model-00001-of-00004.safetensors",
648
+ "vision_model.encoder.layers.6.norm2.weight": "model-00001-of-00004.safetensors",
649
+ "vision_model.encoder.layers.7.attn.proj.bias": "model-00001-of-00004.safetensors",
650
+ "vision_model.encoder.layers.7.attn.proj.weight": "model-00001-of-00004.safetensors",
651
+ "vision_model.encoder.layers.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
652
+ "vision_model.encoder.layers.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
653
+ "vision_model.encoder.layers.7.ls1": "model-00001-of-00004.safetensors",
654
+ "vision_model.encoder.layers.7.ls2": "model-00001-of-00004.safetensors",
655
+ "vision_model.encoder.layers.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
656
+ "vision_model.encoder.layers.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
657
+ "vision_model.encoder.layers.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
658
+ "vision_model.encoder.layers.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
659
+ "vision_model.encoder.layers.7.norm1.bias": "model-00001-of-00004.safetensors",
660
+ "vision_model.encoder.layers.7.norm1.weight": "model-00001-of-00004.safetensors",
661
+ "vision_model.encoder.layers.7.norm2.bias": "model-00001-of-00004.safetensors",
662
+ "vision_model.encoder.layers.7.norm2.weight": "model-00001-of-00004.safetensors",
663
+ "vision_model.encoder.layers.8.attn.proj.bias": "model-00001-of-00004.safetensors",
664
+ "vision_model.encoder.layers.8.attn.proj.weight": "model-00001-of-00004.safetensors",
665
+ "vision_model.encoder.layers.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
666
+ "vision_model.encoder.layers.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
667
+ "vision_model.encoder.layers.8.ls1": "model-00001-of-00004.safetensors",
668
+ "vision_model.encoder.layers.8.ls2": "model-00001-of-00004.safetensors",
669
+ "vision_model.encoder.layers.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
670
+ "vision_model.encoder.layers.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
671
+ "vision_model.encoder.layers.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
672
+ "vision_model.encoder.layers.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
673
+ "vision_model.encoder.layers.8.norm1.bias": "model-00001-of-00004.safetensors",
674
+ "vision_model.encoder.layers.8.norm1.weight": "model-00001-of-00004.safetensors",
675
+ "vision_model.encoder.layers.8.norm2.bias": "model-00001-of-00004.safetensors",
676
+ "vision_model.encoder.layers.8.norm2.weight": "model-00001-of-00004.safetensors",
677
+ "vision_model.encoder.layers.9.attn.proj.bias": "model-00001-of-00004.safetensors",
678
+ "vision_model.encoder.layers.9.attn.proj.weight": "model-00001-of-00004.safetensors",
679
+ "vision_model.encoder.layers.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
680
+ "vision_model.encoder.layers.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
681
+ "vision_model.encoder.layers.9.ls1": "model-00001-of-00004.safetensors",
682
+ "vision_model.encoder.layers.9.ls2": "model-00001-of-00004.safetensors",
683
+ "vision_model.encoder.layers.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
684
+ "vision_model.encoder.layers.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
685
+ "vision_model.encoder.layers.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
686
+ "vision_model.encoder.layers.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
687
+ "vision_model.encoder.layers.9.norm1.bias": "model-00001-of-00004.safetensors",
688
+ "vision_model.encoder.layers.9.norm1.weight": "model-00001-of-00004.safetensors",
689
+ "vision_model.encoder.layers.9.norm2.bias": "model-00001-of-00004.safetensors",
690
+ "vision_model.encoder.layers.9.norm2.weight": "model-00001-of-00004.safetensors"
691
+ }
692
+ }
modeling_intern_vit.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ from typing import Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+ import torch.utils.checkpoint
11
+ from einops import rearrange
12
+ from timm.layers import DropPath
13
+ from torch import nn
14
+ from transformers.activations import ACT2FN
15
+ from transformers.modeling_outputs import (BaseModelOutput,
16
+ BaseModelOutputWithPooling)
17
+ from transformers.modeling_utils import PreTrainedModel
18
+ from transformers.utils import logging
19
+
20
+ from .configuration_intern_vit import InternVisionConfig
21
+
22
+ try:
23
+ from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_varlen_qkvpacked_func
26
+ has_flash_attn = True
27
+ except:
28
+ print('FlashAttention2 is not installed.')
29
+ has_flash_attn = False
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ class FlashAttention(nn.Module):
35
+ """Implement the scaled dot product attention with softmax.
36
+ Arguments
37
+ ---------
38
+ softmax_scale: The temperature to use for the softmax attention.
39
+ (default: 1/sqrt(d_keys) where d_keys is computed at
40
+ runtime)
41
+ attention_dropout: The dropout rate to apply to the attention
42
+ (default: 0.0)
43
+ """
44
+
45
+ def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
46
+ super().__init__()
47
+ self.softmax_scale = softmax_scale
48
+ self.dropout_p = attention_dropout
49
+
50
+ def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
51
+ max_s=None, need_weights=False):
52
+ """Implements the multihead softmax attention.
53
+ Arguments
54
+ ---------
55
+ qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
56
+ if unpadded: (nnz, 3, h, d)
57
+ key_padding_mask: a bool tensor of shape (B, S)
58
+ """
59
+ assert not need_weights
60
+ assert qkv.dtype in [torch.float16, torch.bfloat16]
61
+ assert qkv.is_cuda
62
+
63
+ if cu_seqlens is None:
64
+ batch_size = qkv.shape[0]
65
+ seqlen = qkv.shape[1]
66
+ if key_padding_mask is None:
67
+ qkv = rearrange(qkv, 'b s ... -> (b s) ...')
68
+ max_s = seqlen
69
+ cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
70
+ device=qkv.device)
71
+ output = flash_attn_varlen_qkvpacked_func(
72
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
+ softmax_scale=self.softmax_scale, causal=causal
74
+ )
75
+ output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
76
+ else:
77
+ nheads = qkv.shape[-2]
78
+ x = rearrange(qkv, 'b s three h d -> b s (three h d)')
79
+ x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
80
+ x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
81
+ output_unpad = flash_attn_varlen_qkvpacked_func(
82
+ x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
83
+ softmax_scale=self.softmax_scale, causal=causal
84
+ )
85
+ output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
86
+ indices, batch_size, seqlen),
87
+ 'b s (h d) -> b s h d', h=nheads)
88
+ else:
89
+ assert max_s is not None
90
+ output = flash_attn_varlen_qkvpacked_func(
91
+ qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
92
+ softmax_scale=self.softmax_scale, causal=causal
93
+ )
94
+
95
+ return output, None
96
+
97
+
98
+ class InternRMSNorm(nn.Module):
99
+ def __init__(self, hidden_size, eps=1e-6):
100
+ super().__init__()
101
+ self.weight = nn.Parameter(torch.ones(hidden_size))
102
+ self.variance_epsilon = eps
103
+
104
+ def forward(self, hidden_states):
105
+ input_dtype = hidden_states.dtype
106
+ hidden_states = hidden_states.to(torch.float32)
107
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
108
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
109
+ return self.weight * hidden_states.to(input_dtype)
110
+
111
+
112
+ try:
113
+ from apex.normalization import FusedRMSNorm
114
+
115
+ InternRMSNorm = FusedRMSNorm # noqa
116
+
117
+ logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
118
+ except ImportError:
119
+ # using the normal InternRMSNorm
120
+ pass
121
+ except Exception:
122
+ logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
123
+ pass
124
+
125
+
126
+ NORM2FN = {
127
+ 'rms_norm': InternRMSNorm,
128
+ 'layer_norm': nn.LayerNorm,
129
+ }
130
+
131
+
132
+ class InternVisionEmbeddings(nn.Module):
133
+ def __init__(self, config: InternVisionConfig):
134
+ super().__init__()
135
+ self.config = config
136
+ self.embed_dim = config.hidden_size
137
+ self.image_size = config.image_size
138
+ self.patch_size = config.patch_size
139
+
140
+ self.class_embedding = nn.Parameter(
141
+ torch.randn(1, 1, self.embed_dim),
142
+ )
143
+
144
+ self.patch_embedding = nn.Conv2d(
145
+ in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
146
+ )
147
+
148
+ self.num_patches = (self.image_size // self.patch_size) ** 2
149
+ self.num_positions = self.num_patches + 1
150
+
151
+ self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
152
+
153
+ def _get_pos_embed(self, pos_embed, H, W):
154
+ target_dtype = pos_embed.dtype
155
+ pos_embed = pos_embed.float().reshape(
156
+ 1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
157
+ pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
158
+ reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
159
+ return pos_embed
160
+
161
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
162
+ target_dtype = self.patch_embedding.weight.dtype
163
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
164
+ batch_size, _, height, width = patch_embeds.shape
165
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
166
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
167
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
168
+ position_embedding = torch.cat([
169
+ self.position_embedding[:, :1, :],
170
+ self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
171
+ ], dim=1)
172
+ embeddings = embeddings + position_embedding.to(target_dtype)
173
+ return embeddings
174
+
175
+
176
+ class InternAttention(nn.Module):
177
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
178
+
179
+ def __init__(self, config: InternVisionConfig):
180
+ super().__init__()
181
+ self.config = config
182
+ self.embed_dim = config.hidden_size
183
+ self.num_heads = config.num_attention_heads
184
+ self.use_flash_attn = config.use_flash_attn and has_flash_attn
185
+ if config.use_flash_attn and not has_flash_attn:
186
+ print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
187
+ self.head_dim = self.embed_dim // self.num_heads
188
+ if self.head_dim * self.num_heads != self.embed_dim:
189
+ raise ValueError(
190
+ f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
191
+ f' {self.num_heads}).'
192
+ )
193
+
194
+ self.scale = self.head_dim ** -0.5
195
+ self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
196
+ self.attn_drop = nn.Dropout(config.attention_dropout)
197
+ self.proj_drop = nn.Dropout(config.dropout)
198
+
199
+ self.qk_normalization = config.qk_normalization
200
+
201
+ if self.qk_normalization:
202
+ self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
203
+ self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
204
+
205
+ if self.use_flash_attn:
206
+ self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
207
+ self.proj = nn.Linear(self.embed_dim, self.embed_dim)
208
+
209
+ def _naive_attn(self, x):
210
+ B, N, C = x.shape
211
+ qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
212
+ q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
213
+
214
+ if self.qk_normalization:
215
+ B_, H_, N_, D_ = q.shape
216
+ q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
217
+ k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
218
+
219
+ attn = ((q * self.scale) @ k.transpose(-2, -1))
220
+ attn = attn.softmax(dim=-1)
221
+ attn = self.attn_drop(attn)
222
+
223
+ x = (attn @ v).transpose(1, 2).reshape(B, N, C)
224
+ x = self.proj(x)
225
+ x = self.proj_drop(x)
226
+ return x
227
+
228
+ def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
229
+ qkv = self.qkv(x)
230
+ qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
231
+
232
+ if self.qk_normalization:
233
+ q, k, v = qkv.unbind(2)
234
+ q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
235
+ k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
236
+ qkv = torch.stack([q, k, v], dim=2)
237
+
238
+ context, _ = self.inner_attn(
239
+ qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
240
+ )
241
+ outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
242
+ outs = self.proj_drop(outs)
243
+ return outs
244
+
245
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
246
+ x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
247
+ return x
248
+
249
+
250
+ class InternMLP(nn.Module):
251
+ def __init__(self, config: InternVisionConfig):
252
+ super().__init__()
253
+ self.config = config
254
+ self.act = ACT2FN[config.hidden_act]
255
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
256
+ self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
257
+
258
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
259
+ hidden_states = self.fc1(hidden_states)
260
+ hidden_states = self.act(hidden_states)
261
+ hidden_states = self.fc2(hidden_states)
262
+ return hidden_states
263
+
264
+
265
+ class InternVisionEncoderLayer(nn.Module):
266
+ def __init__(self, config: InternVisionConfig, drop_path_rate: float):
267
+ super().__init__()
268
+ self.embed_dim = config.hidden_size
269
+ self.intermediate_size = config.intermediate_size
270
+ self.norm_type = config.norm_type
271
+
272
+ self.attn = InternAttention(config)
273
+ self.mlp = InternMLP(config)
274
+ self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
275
+ self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
276
+
277
+ self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
278
+ self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
279
+ self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
280
+ self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
281
+
282
+ def forward(
283
+ self,
284
+ hidden_states: torch.Tensor,
285
+ ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
286
+ """
287
+ Args:
288
+ hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
289
+ """
290
+ hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
291
+
292
+ hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
293
+
294
+ return hidden_states
295
+
296
+
297
+ class InternVisionEncoder(nn.Module):
298
+ """
299
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
300
+ [`InternEncoderLayer`].
301
+
302
+ Args:
303
+ config (`InternConfig`):
304
+ The corresponding vision configuration for the `InternEncoder`.
305
+ """
306
+
307
+ def __init__(self, config: InternVisionConfig):
308
+ super().__init__()
309
+ self.config = config
310
+ # stochastic depth decay rule
311
+ dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
312
+ self.layers = nn.ModuleList([
313
+ InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
314
+ self.gradient_checkpointing = True
315
+
316
+ def forward(
317
+ self,
318
+ inputs_embeds,
319
+ output_hidden_states: Optional[bool] = None,
320
+ return_dict: Optional[bool] = None,
321
+ ) -> Union[Tuple, BaseModelOutput]:
322
+ r"""
323
+ Args:
324
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
325
+ Embedded representation of the inputs. Should be float, not int tokens.
326
+ output_hidden_states (`bool`, *optional*):
327
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
328
+ for more detail.
329
+ return_dict (`bool`, *optional*):
330
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
331
+ """
332
+ output_hidden_states = (
333
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
334
+ )
335
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
336
+
337
+ encoder_states = () if output_hidden_states else None
338
+ hidden_states = inputs_embeds
339
+
340
+ for idx, encoder_layer in enumerate(self.layers):
341
+ if output_hidden_states:
342
+ encoder_states = encoder_states + (hidden_states,)
343
+ if self.gradient_checkpointing and self.training:
344
+ layer_outputs = torch.utils.checkpoint.checkpoint(
345
+ encoder_layer,
346
+ hidden_states)
347
+ else:
348
+ layer_outputs = encoder_layer(
349
+ hidden_states,
350
+ )
351
+ hidden_states = layer_outputs
352
+
353
+ if output_hidden_states:
354
+ encoder_states = encoder_states + (hidden_states,)
355
+
356
+ if not return_dict:
357
+ return tuple(v for v in [hidden_states, encoder_states] if v is not None)
358
+ return BaseModelOutput(
359
+ last_hidden_state=hidden_states, hidden_states=encoder_states
360
+ )
361
+
362
+
363
+ class InternVisionModel(PreTrainedModel):
364
+ main_input_name = 'pixel_values'
365
+ _supports_flash_attn_2 = True
366
+ config_class = InternVisionConfig
367
+ _no_split_modules = ['InternVisionEncoderLayer']
368
+
369
+ def __init__(self, config: InternVisionConfig):
370
+ super().__init__(config)
371
+ self.config = config
372
+
373
+ self.embeddings = InternVisionEmbeddings(config)
374
+ self.encoder = InternVisionEncoder(config)
375
+
376
+ def resize_pos_embeddings(self, old_size, new_size, patch_size):
377
+ pos_emb = self.embeddings.position_embedding
378
+ _, num_positions, embed_dim = pos_emb.shape
379
+ cls_emb = pos_emb[:, :1, :]
380
+ pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
381
+ pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
382
+ pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
383
+ pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
384
+ self.embeddings.position_embedding = nn.Parameter(pos_emb)
385
+ self.embeddings.image_size = new_size
386
+ logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
387
+
388
+ def get_input_embeddings(self):
389
+ return self.embeddings
390
+
391
+ def forward(
392
+ self,
393
+ pixel_values: Optional[torch.FloatTensor] = None,
394
+ output_hidden_states: Optional[bool] = None,
395
+ return_dict: Optional[bool] = None,
396
+ pixel_embeds: Optional[torch.FloatTensor] = None,
397
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
398
+ output_hidden_states = (
399
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
400
+ )
401
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
402
+
403
+ if pixel_values is None and pixel_embeds is None:
404
+ raise ValueError('You have to specify pixel_values or pixel_embeds')
405
+
406
+ if pixel_embeds is not None:
407
+ hidden_states = pixel_embeds
408
+ else:
409
+ if len(pixel_values.shape) == 4:
410
+ hidden_states = self.embeddings(pixel_values)
411
+ else:
412
+ raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
413
+ encoder_outputs = self.encoder(
414
+ inputs_embeds=hidden_states,
415
+ output_hidden_states=output_hidden_states,
416
+ return_dict=return_dict,
417
+ )
418
+ last_hidden_state = encoder_outputs.last_hidden_state
419
+ pooled_output = last_hidden_state[:, 0, :]
420
+
421
+ if not return_dict:
422
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
423
+
424
+ return BaseModelOutputWithPooling(
425
+ last_hidden_state=last_hidden_state,
426
+ pooler_output=pooled_output,
427
+ hidden_states=encoder_outputs.hidden_states,
428
+ attentions=encoder_outputs.attentions,
429
+ )
modeling_internlm2.py ADDED
@@ -0,0 +1,1456 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+ # limitations under the License.
16
+ """ PyTorch InternLM2 model."""
17
+ import math
18
+ import queue
19
+ import threading
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from einops import rearrange
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import (BaseModelOutputWithPast,
31
+ CausalLMOutputWithPast,
32
+ SequenceClassifierOutputWithPast)
33
+ from transformers.modeling_utils import PreTrainedModel
34
+ from transformers.utils import (add_start_docstrings,
35
+ add_start_docstrings_to_model_forward, logging,
36
+ replace_return_docstrings)
37
+
38
+ try:
39
+ from transformers.generation.streamers import BaseStreamer
40
+ except: # noqa # pylint: disable=bare-except
41
+ BaseStreamer = None
42
+
43
+ from .configuration_internlm2 import InternLM2Config
44
+
45
+ logger = logging.get_logger(__name__)
46
+
47
+ _CONFIG_FOR_DOC = 'InternLM2Config'
48
+
49
+ flash_attn_func, flash_attn_varlen_func = None, None
50
+ pad_input, index_first_axis, unpad_input = None, None, None
51
+ try:
52
+ from flash_attn import flash_attn_func as _flash_attn_func
53
+ from flash_attn import flash_attn_varlen_func as _flash_attn_varlen_func
54
+ from flash_attn.bert_padding import index_first_axis as _index_first_axis
55
+ from flash_attn.bert_padding import pad_input as _pad_input
56
+ from flash_attn.bert_padding import unpad_input as _unpad_input
57
+
58
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
59
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
60
+ has_flash_attn = True
61
+ except:
62
+ has_flash_attn = False
63
+
64
+
65
+ def _import_flash_attn():
66
+ global flash_attn_func, flash_attn_varlen_func
67
+ global pad_input, index_first_axis, unpad_input
68
+ try:
69
+ from flash_attn import flash_attn_func as _flash_attn_func
70
+ from flash_attn import \
71
+ flash_attn_varlen_func as _flash_attn_varlen_func
72
+ from flash_attn.bert_padding import \
73
+ index_first_axis as _index_first_axis
74
+ from flash_attn.bert_padding import pad_input as _pad_input
75
+ from flash_attn.bert_padding import unpad_input as _unpad_input
76
+ flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
77
+ pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
78
+ except ImportError:
79
+ raise ImportError('flash_attn is not installed.')
80
+
81
+
82
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
83
+ def _get_unpad_data(attention_mask):
84
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
85
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
86
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
87
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
88
+ return (
89
+ indices,
90
+ cu_seqlens,
91
+ max_seqlen_in_batch,
92
+ )
93
+
94
+
95
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
96
+ def _make_causal_mask(
97
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
98
+ ):
99
+ """
100
+ Make causal mask used for bi-directional self-attention.
101
+ """
102
+ bsz, tgt_len = input_ids_shape
103
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
104
+ mask_cond = torch.arange(mask.size(-1), device=device)
105
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
106
+ mask = mask.to(dtype)
107
+
108
+ if past_key_values_length > 0:
109
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
110
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
111
+
112
+
113
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
114
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
115
+ """
116
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
117
+ """
118
+ bsz, src_len = mask.size()
119
+ tgt_len = tgt_len if tgt_len is not None else src_len
120
+
121
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
122
+
123
+ inverted_mask = 1.0 - expanded_mask
124
+
125
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
126
+
127
+
128
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
129
+ class InternLM2RMSNorm(nn.Module):
130
+ def __init__(self, hidden_size, eps=1e-6):
131
+ """
132
+ InternLM2RMSNorm is equivalent to T5LayerNorm
133
+ """
134
+ super().__init__()
135
+ self.weight = nn.Parameter(torch.ones(hidden_size))
136
+ self.variance_epsilon = eps
137
+
138
+ def forward(self, hidden_states):
139
+ input_dtype = hidden_states.dtype
140
+ hidden_states = hidden_states.to(torch.float32)
141
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
142
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
143
+ return self.weight * hidden_states.to(input_dtype)
144
+
145
+
146
+ try:
147
+ from functools import partial
148
+
149
+ from apex.normalization import FusedRMSNorm
150
+ InternLM2RMSNorm = partial(FusedRMSNorm, eps=1e-6) # noqa
151
+ print('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternLM2RMSNorm')
152
+ except ImportError:
153
+ # using the normal LlamaRMSNorm
154
+ pass
155
+ except Exception:
156
+ print('discovered apex but it failed to load, falling back to InternLM2RMSNorm')
157
+ pass
158
+
159
+
160
+ # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
161
+ class InternLM2RotaryEmbedding(nn.Module):
162
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
163
+ super().__init__()
164
+
165
+ self.dim = dim
166
+ self.max_position_embeddings = max_position_embeddings
167
+ self.base = base
168
+ self.inv_freq = None
169
+ # inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
170
+ # self.register_buffer('inv_freq', inv_freq, persistent=False)
171
+
172
+ self.max_seq_len_cached = -1
173
+ # Build here to make `torch.jit.trace` work.
174
+ # self._set_cos_sin_cache(
175
+ # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
176
+ # )
177
+
178
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
179
+ if self.inv_freq is None:
180
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
181
+ del self.inv_freq
182
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
183
+
184
+
185
+ self.max_seq_len_cached = seq_len
186
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
187
+
188
+ # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
189
+ freqs = torch.outer(t, self.inv_freq.to(device=t.device))
190
+
191
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
192
+ emb = torch.cat((freqs, freqs), dim=-1)
193
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
194
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
195
+
196
+ def forward(self, x, seq_len=None):
197
+ # x: [bs, num_attention_heads, seq_len, head_size]
198
+ if seq_len > self.max_seq_len_cached:
199
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
200
+
201
+ return (
202
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
203
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
204
+ )
205
+
206
+
207
+ # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
208
+ class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
209
+ """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
210
+
211
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
212
+ self.scaling_factor = scaling_factor
213
+ super().__init__(dim, max_position_embeddings, base, device)
214
+
215
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
216
+ if self.inv_freq is None:
217
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
218
+ del self.inv_freq
219
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
220
+
221
+ self.max_seq_len_cached = seq_len
222
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
223
+ t = t / self.scaling_factor
224
+
225
+ # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
226
+ freqs = torch.outer(t, self.inv_freq.to(device=t.device))
227
+
228
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
229
+ emb = torch.cat((freqs, freqs), dim=-1)
230
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
231
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
232
+
233
+
234
+ # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
235
+ class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
236
+ """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
237
+ Credits to the Reddit users /u/bloc97 and /u/emozilla.
238
+ """
239
+
240
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
241
+ self.scaling_factor = scaling_factor
242
+ super().__init__(dim, max_position_embeddings, base, device)
243
+
244
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
245
+ if self.inv_freq is None:
246
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
247
+ del self.inv_freq
248
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
249
+
250
+
251
+ self.max_seq_len_cached = seq_len
252
+
253
+ if seq_len > self.max_position_embeddings:
254
+ base = self.base * (
255
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
256
+ ) ** (self.dim / (self.dim - 2))
257
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
258
+ self.register_buffer('inv_freq', inv_freq, persistent=False)
259
+
260
+ t = torch.arange(self.max_seq_len_cached, device=device).to(dtype=self.inv_freq.dtype)
261
+
262
+ # freqs = torch.einsum('i,j->ij', t, self.inv_freq)
263
+ freqs = torch.outer(t, self.inv_freq.to(device=t.device))
264
+
265
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
266
+ emb = torch.cat((freqs, freqs), dim=-1)
267
+ self.register_buffer('cos_cached', emb.cos().to(dtype), persistent=False)
268
+ self.register_buffer('sin_cached', emb.sin().to(dtype), persistent=False)
269
+
270
+
271
+ # Copied from transformers.model.llama.modeling_llama.rotate_half
272
+ def rotate_half(x):
273
+ """Rotates half the hidden dims of the input."""
274
+ x1 = x[..., : x.shape[-1] // 2]
275
+ x2 = x[..., x.shape[-1] // 2:]
276
+ return torch.cat((-x2, x1), dim=-1)
277
+
278
+
279
+
280
+ # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb; float
281
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
282
+ """Applies Rotary Position Embedding to the query and key tensors."""
283
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim).float()
284
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim).float()
285
+ q_dtype, k_dtype = q.dtype, k.dtype
286
+ q, k = q.float(), k.float()
287
+ q_embed = (q * cos) + (rotate_half(q) * sin)
288
+ k_embed = (k * cos) + (rotate_half(k) * sin)
289
+ return q_embed.to(dtype=q_dtype), k_embed.to(dtype=k_dtype)
290
+
291
+
292
+ class InternLM2MLP(nn.Module):
293
+ def __init__(self, config):
294
+ super().__init__()
295
+ self.config = config
296
+ self.hidden_size = config.hidden_size
297
+ self.intermediate_size = config.intermediate_size
298
+ self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
299
+ self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
300
+ self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
301
+ self.act_fn = ACT2FN[config.hidden_act]
302
+
303
+ def forward(self, x):
304
+ down_proj = self.w2(self.act_fn(self.w1(x)) * self.w3(x))
305
+
306
+ return down_proj
307
+
308
+
309
+ # Copied from transformers.model.llama.modeling_llama.repeat_kv
310
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
311
+ """
312
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
313
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
314
+ """
315
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
316
+ if n_rep == 1:
317
+ return hidden_states
318
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
319
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
320
+
321
+
322
+ # Modified from transformers.model.llama.modeling_llama.LlamaAttention
323
+ class InternLM2Attention(nn.Module):
324
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
325
+
326
+ def __init__(self, config: InternLM2Config):
327
+ super().__init__()
328
+ self.config = config
329
+ self.hidden_size = config.hidden_size
330
+ self.num_heads = config.num_attention_heads
331
+ self.head_dim = self.hidden_size // self.num_heads
332
+ self.num_key_value_heads = config.num_key_value_heads
333
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
334
+ self.max_position_embeddings = config.max_position_embeddings
335
+ self.is_causal = True
336
+
337
+ if (self.head_dim * self.num_heads) != self.hidden_size:
338
+ raise ValueError(
339
+ f'hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}'
340
+ f' and `num_heads`: {self.num_heads}).'
341
+ )
342
+
343
+ self.wqkv = nn.Linear(
344
+ self.hidden_size,
345
+ (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
346
+ bias=config.bias,
347
+ )
348
+
349
+ self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
350
+ self._init_rope()
351
+
352
+ def _init_rope(self):
353
+ if self.config.rope_scaling is None:
354
+ self.rotary_emb = InternLM2RotaryEmbedding(
355
+ self.head_dim,
356
+ max_position_embeddings=self.max_position_embeddings,
357
+ base=self.config.rope_theta,
358
+ )
359
+ else:
360
+ scaling_type = self.config.rope_scaling['type']
361
+ scaling_factor = self.config.rope_scaling['factor']
362
+ if scaling_type == 'dynamic':
363
+ self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
364
+ self.head_dim,
365
+ max_position_embeddings=self.max_position_embeddings,
366
+ base=self.config.rope_theta,
367
+ scaling_factor=scaling_factor,
368
+ )
369
+ elif scaling_type == 'linear':
370
+ self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
371
+ self.head_dim,
372
+ max_position_embeddings=self.max_position_embeddings,
373
+ base=self.config.rope_theta,
374
+ scaling_factor=scaling_factor,
375
+ )
376
+ else:
377
+ raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
378
+ return self.rotary_emb
379
+
380
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
381
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
382
+
383
+ def forward(
384
+ self,
385
+ hidden_states: torch.Tensor,
386
+ attention_mask: Optional[torch.Tensor] = None,
387
+ position_ids: Optional[torch.LongTensor] = None,
388
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
389
+ output_attentions: bool = False,
390
+ use_cache: bool = False,
391
+ **kwargs,
392
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
393
+ if 'padding_mask' in kwargs:
394
+ warnings.warn(
395
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
396
+ 'Please make sure use `attention_mask` instead.`'
397
+ )
398
+
399
+ bsz, q_len, _ = hidden_states.size()
400
+
401
+ qkv_states = self.wqkv(hidden_states)
402
+
403
+ qkv_states = rearrange(
404
+ qkv_states,
405
+ 'b q (h gs d) -> b q h gs d',
406
+ gs=2 + self.num_key_value_groups,
407
+ d=self.head_dim,
408
+ )
409
+
410
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
411
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
412
+ key_states = qkv_states[..., -2, :]
413
+ value_states = qkv_states[..., -1, :]
414
+
415
+ query_states = query_states.transpose(1, 2)
416
+ key_states = key_states.transpose(1, 2)
417
+ value_states = value_states.transpose(1, 2)
418
+
419
+ kv_seq_len = key_states.shape[-2]
420
+ if past_key_value is not None:
421
+ kv_seq_len += past_key_value[0].shape[-2]
422
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
423
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
424
+
425
+ if past_key_value is not None:
426
+ # reuse k, v, self_attention
427
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
428
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
429
+
430
+ past_key_value = (key_states, value_states) if use_cache else None
431
+
432
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
433
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
434
+
435
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
436
+
437
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
438
+ raise ValueError(
439
+ f'Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is'
440
+ f' {attn_weights.size()}'
441
+ )
442
+
443
+ if attention_mask is not None:
444
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
445
+ raise ValueError(
446
+ f'Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}'
447
+ )
448
+ attn_weights = attn_weights + attention_mask
449
+
450
+ # upcast attention to fp32
451
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
452
+ attn_output = torch.matmul(attn_weights, value_states)
453
+
454
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
455
+ raise ValueError(
456
+ f'`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is'
457
+ f' {attn_output.size()}'
458
+ )
459
+
460
+ attn_output = attn_output.transpose(1, 2).contiguous()
461
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
462
+
463
+ attn_output = self.wo(attn_output)
464
+
465
+ if not output_attentions:
466
+ attn_weights = None
467
+
468
+ return attn_output, attn_weights, past_key_value
469
+
470
+
471
+ # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
472
+ class InternLM2FlashAttention2(InternLM2Attention):
473
+ """
474
+ InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
475
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
476
+ flash attention and deal with padding tokens in case the input contains any of them.
477
+ """
478
+
479
+ def forward(
480
+ self,
481
+ hidden_states: torch.Tensor,
482
+ attention_mask: Optional[torch.LongTensor] = None,
483
+ position_ids: Optional[torch.LongTensor] = None,
484
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
485
+ output_attentions: bool = False,
486
+ use_cache: bool = False,
487
+ **kwargs,
488
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
489
+ # InternLM2FlashAttention2 attention does not support output_attentions
490
+ if 'padding_mask' in kwargs:
491
+ warnings.warn(
492
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
493
+ 'Please make sure use `attention_mask` instead.`'
494
+ )
495
+
496
+ # overwrite attention_mask with padding_mask
497
+ attention_mask = kwargs.pop('padding_mask')
498
+
499
+ output_attentions = False
500
+
501
+ bsz, q_len, _ = hidden_states.size()
502
+
503
+ qkv_states = self.wqkv(hidden_states)
504
+
505
+ qkv_states = rearrange(
506
+ qkv_states,
507
+ 'b q (h gs d) -> b q h gs d',
508
+ gs=2 + self.num_key_value_groups,
509
+ d=self.head_dim,
510
+ )
511
+
512
+ query_states = qkv_states[..., : self.num_key_value_groups, :]
513
+ query_states = rearrange(query_states, 'b q h gs d -> b q (h gs) d')
514
+ key_states = qkv_states[..., -2, :]
515
+ value_states = qkv_states[..., -1, :]
516
+
517
+ query_states = query_states.transpose(1, 2)
518
+ key_states = key_states.transpose(1, 2)
519
+ value_states = value_states.transpose(1, 2)
520
+
521
+ kv_seq_len = key_states.shape[-2]
522
+ if past_key_value is not None:
523
+ kv_seq_len += past_key_value[0].shape[-2]
524
+
525
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
526
+
527
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
528
+
529
+ if past_key_value is not None:
530
+ # reuse k, v, self_attention
531
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
532
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
533
+
534
+ past_key_value = (key_states, value_states) if use_cache else None
535
+
536
+ query_states = query_states.transpose(1, 2)
537
+ key_states = key_states.transpose(1, 2)
538
+ value_states = value_states.transpose(1, 2)
539
+
540
+ attn_output = self._flash_attention_forward(
541
+ query_states, key_states, value_states, attention_mask, q_len
542
+ )
543
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
544
+ attn_output = self.wo(attn_output)
545
+
546
+ if not output_attentions:
547
+ attn_weights = None
548
+
549
+ return attn_output, attn_weights, past_key_value
550
+
551
+ def _flash_attention_forward(
552
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
553
+ ):
554
+ """
555
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
556
+ first unpad the input, then computes the attention scores and pad the final attention scores.
557
+
558
+ Args:
559
+ query_states (`torch.Tensor`):
560
+ Input query states to be passed to Flash Attention API
561
+ key_states (`torch.Tensor`):
562
+ Input key states to be passed to Flash Attention API
563
+ value_states (`torch.Tensor`):
564
+ Input value states to be passed to Flash Attention API
565
+ attention_mask (`torch.Tensor`):
566
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
567
+ position of padding tokens and 1 for the position of non-padding tokens.
568
+ dropout (`int`, *optional*):
569
+ Attention dropout
570
+ softmax_scale (`float`, *optional*):
571
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
572
+ """
573
+ # Contains at least one padding token in the sequence
574
+ causal = self.is_causal and query_length != 1
575
+ if attention_mask is not None:
576
+ batch_size = query_states.shape[0]
577
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
578
+ query_states, key_states, value_states, attention_mask, query_length
579
+ )
580
+
581
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
582
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
583
+
584
+ attn_output_unpad = flash_attn_varlen_func(
585
+ query_states,
586
+ key_states,
587
+ value_states,
588
+ cu_seqlens_q=cu_seqlens_q,
589
+ cu_seqlens_k=cu_seqlens_k,
590
+ max_seqlen_q=max_seqlen_in_batch_q,
591
+ max_seqlen_k=max_seqlen_in_batch_k,
592
+ dropout_p=dropout,
593
+ softmax_scale=softmax_scale,
594
+ causal=causal,
595
+ )
596
+
597
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
598
+ else:
599
+ attn_output = flash_attn_func(
600
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
601
+ )
602
+
603
+ return attn_output
604
+
605
+ def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
606
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
607
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
608
+
609
+ key_layer = index_first_axis(
610
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
611
+ )
612
+ value_layer = index_first_axis(
613
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
614
+ )
615
+
616
+ if query_length == kv_seq_len:
617
+ query_layer = index_first_axis(
618
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
619
+ )
620
+ cu_seqlens_q = cu_seqlens_k
621
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
622
+ indices_q = indices_k
623
+ elif query_length == 1:
624
+ max_seqlen_in_batch_q = 1
625
+ cu_seqlens_q = torch.arange(
626
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
627
+ ) # There is a memcpy here, that is very bad.
628
+ indices_q = cu_seqlens_q[:-1]
629
+ query_layer = query_layer.squeeze(1)
630
+ else:
631
+ # The -q_len: slice assumes left padding.
632
+ attention_mask = attention_mask[:, -query_length:]
633
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
634
+
635
+ return (
636
+ query_layer,
637
+ key_layer,
638
+ value_layer,
639
+ indices_q.to(torch.int64),
640
+ (cu_seqlens_q, cu_seqlens_k),
641
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
642
+ )
643
+
644
+
645
+ INTERNLM2_ATTENTION_CLASSES = {
646
+ 'eager': InternLM2Attention,
647
+ 'flash_attention_2': InternLM2FlashAttention2,
648
+ }
649
+
650
+
651
+ # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
652
+ class InternLM2DecoderLayer(nn.Module):
653
+ def __init__(self, config: InternLM2Config):
654
+ super().__init__()
655
+ self.hidden_size = config.hidden_size
656
+
657
+ self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
658
+
659
+ self.feed_forward = InternLM2MLP(config)
660
+ self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
661
+ self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
662
+
663
+ def forward(
664
+ self,
665
+ hidden_states: torch.Tensor,
666
+ attention_mask: Optional[torch.Tensor] = None,
667
+ position_ids: Optional[torch.LongTensor] = None,
668
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
669
+ output_attentions: Optional[bool] = False,
670
+ use_cache: Optional[bool] = False,
671
+ **kwargs,
672
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
673
+ """
674
+ Args:
675
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
676
+ attention_mask (`torch.FloatTensor`, *optional*):
677
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
678
+ query_sequence_length, key_sequence_length)` if default attention is used.
679
+ output_attentions (`bool`, *optional*):
680
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
681
+ returned tensors for more detail.
682
+ use_cache (`bool`, *optional*):
683
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
684
+ (see `past_key_values`).
685
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
686
+ """
687
+ if 'padding_mask' in kwargs:
688
+ warnings.warn(
689
+ 'Passing `padding_mask` is deprecated and will be removed in v4.37. '
690
+ 'Please make sure use `attention_mask` instead.`'
691
+ )
692
+
693
+ residual = hidden_states
694
+
695
+ hidden_states = self.attention_norm(hidden_states)
696
+
697
+ # Self Attention
698
+ hidden_states, self_attn_weights, present_key_value = self.attention(
699
+ hidden_states=hidden_states,
700
+ attention_mask=attention_mask,
701
+ position_ids=position_ids,
702
+ past_key_value=past_key_value,
703
+ output_attentions=output_attentions,
704
+ use_cache=use_cache,
705
+ **kwargs,
706
+ )
707
+ hidden_states = residual + hidden_states
708
+
709
+ # Fully Connected
710
+ residual = hidden_states
711
+ hidden_states = self.ffn_norm(hidden_states)
712
+ hidden_states = self.feed_forward(hidden_states)
713
+ hidden_states = residual + hidden_states
714
+
715
+ outputs = (hidden_states,)
716
+
717
+ if output_attentions:
718
+ outputs += (self_attn_weights,)
719
+
720
+ if use_cache:
721
+ outputs += (present_key_value,)
722
+
723
+ return outputs
724
+
725
+
726
+ InternLM2_START_DOCSTRING = r"""
727
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
728
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
729
+ etc.)
730
+
731
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
732
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
733
+ and behavior.
734
+
735
+ Parameters:
736
+ config ([`InternLM2Config`]):
737
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
738
+ load the weights associated with the model, only the configuration. Check out the
739
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
740
+ """
741
+
742
+
743
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
744
+ @add_start_docstrings(
745
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
746
+ InternLM2_START_DOCSTRING,
747
+ )
748
+ class InternLM2PreTrainedModel(PreTrainedModel):
749
+ config_class = InternLM2Config
750
+ base_model_prefix = 'model'
751
+ supports_gradient_checkpointing = True
752
+ _no_split_modules = ['InternLM2DecoderLayer']
753
+ _skip_keys_device_placement = 'past_key_values'
754
+
755
+ def _init_weights(self, module):
756
+ std = self.config.initializer_range
757
+ if isinstance(module, nn.Linear):
758
+ module.weight.data.normal_(mean=0.0, std=std)
759
+ if module.bias is not None:
760
+ module.bias.data.zero_()
761
+ elif isinstance(module, nn.Embedding):
762
+ module.weight.data.normal_(mean=0.0, std=std)
763
+ if module.padding_idx is not None:
764
+ module.weight.data[module.padding_idx].zero_()
765
+
766
+
767
+ InternLM2_INPUTS_DOCSTRING = r"""
768
+ Args:
769
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
770
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
771
+ it.
772
+
773
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
774
+ [`PreTrainedTokenizer.__call__`] for details.
775
+
776
+ [What are input IDs?](../glossary#input-ids)
777
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
778
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
779
+
780
+ - 1 for tokens that are **not masked**,
781
+ - 0 for tokens that are **masked**.
782
+
783
+ [What are attention masks?](../glossary#attention-mask)
784
+
785
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
786
+ [`PreTrainedTokenizer.__call__`] for details.
787
+
788
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
789
+ `past_key_values`).
790
+
791
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
792
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
793
+ information on the default strategy.
794
+
795
+ - 1 indicates the head is **not masked**,
796
+ - 0 indicates the head is **masked**.
797
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
798
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
799
+ config.n_positions - 1]`.
800
+
801
+ [What are position IDs?](../glossary#position-ids)
802
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
803
+ when `config.use_cache=True`):
804
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
805
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
806
+ `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
807
+
808
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
809
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
810
+
811
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
812
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
813
+ of shape `(batch_size, sequence_length)`.
814
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
815
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
816
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
817
+ model's internal embedding lookup matrix.
818
+ use_cache (`bool`, *optional*):
819
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
820
+ `past_key_values`).
821
+ output_attentions (`bool`, *optional*):
822
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
823
+ tensors for more detail.
824
+ output_hidden_states (`bool`, *optional*):
825
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
826
+ more detail.
827
+ return_dict (`bool`, *optional*):
828
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
829
+ """
830
+
831
+
832
+ # Modified from transformers.model.llama.modeling_llama.LlamaModel
833
+ @add_start_docstrings(
834
+ 'The bare InternLM2 Model outputting raw hidden-states without any specific head on top.',
835
+ InternLM2_START_DOCSTRING,
836
+ )
837
+ class InternLM2Model(InternLM2PreTrainedModel):
838
+ """
839
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
840
+
841
+ Args:
842
+ config: InternLM2Config
843
+ """
844
+
845
+ _auto_class = 'AutoModel'
846
+
847
+ def __init__(self, config: InternLM2Config):
848
+ super().__init__(config)
849
+ self.padding_idx = config.pad_token_id
850
+ self.vocab_size = config.vocab_size
851
+ self.config = config
852
+ if not has_flash_attn:
853
+ self.config.attn_implementation = 'eager'
854
+ print('Warning: Flash attention is not available, using eager attention instead.')
855
+
856
+ self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
857
+
858
+ self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
859
+ self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
860
+
861
+ self.gradient_checkpointing = False
862
+ # Initialize weights and apply final processing
863
+ self.post_init()
864
+
865
+ def get_input_embeddings(self):
866
+ return self.tok_embeddings
867
+
868
+ def set_input_embeddings(self, value):
869
+ self.tok_embeddings = value
870
+
871
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
872
+ # create causal mask
873
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
874
+ combined_attention_mask = None
875
+ if input_shape[-1] > 1:
876
+ combined_attention_mask = _make_causal_mask(
877
+ input_shape,
878
+ inputs_embeds.dtype,
879
+ device=inputs_embeds.device,
880
+ past_key_values_length=past_key_values_length,
881
+ )
882
+
883
+ if attention_mask is not None:
884
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
885
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
886
+ inputs_embeds.device
887
+ )
888
+ combined_attention_mask = (
889
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
890
+ )
891
+
892
+ return combined_attention_mask
893
+
894
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
895
+ def forward(
896
+ self,
897
+ input_ids: torch.LongTensor = None,
898
+ attention_mask: Optional[torch.Tensor] = None,
899
+ position_ids: Optional[torch.LongTensor] = None,
900
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
901
+ inputs_embeds: Optional[torch.FloatTensor] = None,
902
+ use_cache: Optional[bool] = None,
903
+ output_attentions: Optional[bool] = None,
904
+ output_hidden_states: Optional[bool] = None,
905
+ return_dict: Optional[bool] = None,
906
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
907
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
908
+ output_hidden_states = (
909
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
910
+ )
911
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
912
+
913
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
914
+
915
+ if self.config.attn_implementation == 'flash_attention_2':
916
+ _import_flash_attn()
917
+
918
+ # retrieve input_ids and inputs_embeds
919
+ if input_ids is not None and inputs_embeds is not None:
920
+ raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
921
+ elif input_ids is not None:
922
+ batch_size, seq_length = input_ids.shape[:2]
923
+ elif inputs_embeds is not None:
924
+ batch_size, seq_length = inputs_embeds.shape[:2]
925
+ else:
926
+ raise ValueError('You have to specify either input_ids or inputs_embeds')
927
+
928
+ seq_length_with_past = seq_length
929
+ past_key_values_length = 0
930
+ if past_key_values is not None:
931
+ past_key_values_length = past_key_values[0][0].shape[2]
932
+ seq_length_with_past = seq_length_with_past + past_key_values_length
933
+
934
+ if position_ids is None:
935
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
936
+ position_ids = torch.arange(
937
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
938
+ )
939
+ position_ids = position_ids.unsqueeze(0)
940
+
941
+ if inputs_embeds is None:
942
+ inputs_embeds = self.tok_embeddings(input_ids)
943
+
944
+ if self.config.attn_implementation == 'flash_attention_2':
945
+ # 2d mask is passed through the layers
946
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
947
+ else:
948
+ if attention_mask is None:
949
+ attention_mask = torch.ones(
950
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
951
+ )
952
+ attention_mask = self._prepare_decoder_attention_mask(
953
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
954
+ )
955
+
956
+ # embed positions
957
+ hidden_states = inputs_embeds
958
+
959
+ if self.gradient_checkpointing and self.training:
960
+ if use_cache:
961
+ logger.warning_once(
962
+ '`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...'
963
+ )
964
+ use_cache = False
965
+
966
+ # decoder layers
967
+ all_hidden_states = () if output_hidden_states else None
968
+ all_self_attns = () if output_attentions else None
969
+ next_decoder_cache = () if use_cache else None
970
+
971
+ for idx, decoder_layer in enumerate(self.layers):
972
+ if output_hidden_states:
973
+ all_hidden_states += (hidden_states,)
974
+
975
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
976
+
977
+ if self.gradient_checkpointing and self.training:
978
+
979
+ def create_custom_forward(module):
980
+ def custom_forward(*inputs):
981
+ # None for past_key_value
982
+ return module(*inputs, output_attentions, None)
983
+
984
+ return custom_forward
985
+
986
+ layer_outputs = torch.utils.checkpoint.checkpoint(
987
+ create_custom_forward(decoder_layer),
988
+ hidden_states,
989
+ attention_mask,
990
+ position_ids,
991
+ None,
992
+ )
993
+ else:
994
+ layer_outputs = decoder_layer(
995
+ hidden_states,
996
+ attention_mask=attention_mask,
997
+ position_ids=position_ids,
998
+ past_key_value=past_key_value,
999
+ output_attentions=output_attentions,
1000
+ use_cache=use_cache,
1001
+ )
1002
+
1003
+ hidden_states = layer_outputs[0]
1004
+
1005
+ if use_cache:
1006
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
1007
+
1008
+ if output_attentions:
1009
+ all_self_attns += (layer_outputs[1],)
1010
+
1011
+ hidden_states = self.norm(hidden_states)
1012
+
1013
+ # add hidden states from the last decoder layer
1014
+ if output_hidden_states:
1015
+ all_hidden_states += (hidden_states,)
1016
+
1017
+ next_cache = next_decoder_cache if use_cache else None
1018
+ if not return_dict:
1019
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1020
+ return BaseModelOutputWithPast(
1021
+ last_hidden_state=hidden_states,
1022
+ past_key_values=next_cache,
1023
+ hidden_states=all_hidden_states,
1024
+ attentions=all_self_attns,
1025
+ )
1026
+
1027
+
1028
+ # Modified from transformers.model.llama.modeling_llama.LlamaForCausalLM
1029
+ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
1030
+ _auto_class = 'AutoModelForCausalLM'
1031
+
1032
+ _tied_weights_keys = ['output.weight']
1033
+
1034
+ def __init__(self, config):
1035
+ super().__init__(config)
1036
+ self.model = InternLM2Model(config)
1037
+ self.vocab_size = config.vocab_size
1038
+ self.output = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1039
+
1040
+ # Initialize weights and apply final processing
1041
+ self.post_init()
1042
+
1043
+ def get_input_embeddings(self):
1044
+ return self.model.tok_embeddings
1045
+
1046
+ def set_input_embeddings(self, value):
1047
+ self.model.tok_embeddings = value
1048
+
1049
+ def get_output_embeddings(self):
1050
+ return self.output
1051
+
1052
+ def set_output_embeddings(self, new_embeddings):
1053
+ self.output = new_embeddings
1054
+
1055
+ def set_decoder(self, decoder):
1056
+ self.model = decoder
1057
+
1058
+ def get_decoder(self):
1059
+ return self.model
1060
+
1061
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1062
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1063
+ def forward(
1064
+ self,
1065
+ input_ids: torch.LongTensor = None,
1066
+ attention_mask: Optional[torch.Tensor] = None,
1067
+ position_ids: Optional[torch.LongTensor] = None,
1068
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1069
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1070
+ labels: Optional[torch.LongTensor] = None,
1071
+ use_cache: Optional[bool] = None,
1072
+ output_attentions: Optional[bool] = None,
1073
+ output_hidden_states: Optional[bool] = None,
1074
+ return_dict: Optional[bool] = None,
1075
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1076
+ r"""
1077
+ Args:
1078
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1079
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1080
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1081
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1082
+
1083
+ Returns:
1084
+
1085
+ Example:
1086
+
1087
+ ```python
1088
+ >>> from transformers import AutoTokenizer, InternLM2ForCausalLM
1089
+
1090
+ >>> model = InternLM2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1091
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1092
+
1093
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1094
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1095
+
1096
+ >>> # Generate
1097
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1098
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1099
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1100
+ ```"""
1101
+
1102
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1103
+ output_hidden_states = (
1104
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1105
+ )
1106
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1107
+
1108
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1109
+ outputs = self.model(
1110
+ input_ids=input_ids,
1111
+ attention_mask=attention_mask,
1112
+ position_ids=position_ids,
1113
+ past_key_values=past_key_values,
1114
+ inputs_embeds=inputs_embeds,
1115
+ use_cache=use_cache,
1116
+ output_attentions=output_attentions,
1117
+ output_hidden_states=output_hidden_states,
1118
+ return_dict=return_dict,
1119
+ )
1120
+
1121
+ hidden_states = outputs[0]
1122
+ logits = self.output(hidden_states)
1123
+ logits = logits.float()
1124
+
1125
+ loss = None
1126
+ if labels is not None:
1127
+ # Shift so that tokens < n predict n
1128
+ shift_logits = logits[..., :-1, :].contiguous()
1129
+ shift_labels = labels[..., 1:].contiguous()
1130
+ # Flatten the tokens
1131
+ loss_fct = CrossEntropyLoss()
1132
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1133
+ shift_labels = shift_labels.view(-1)
1134
+ # Enable model parallelism
1135
+ shift_labels = shift_labels.to(shift_logits.device)
1136
+ loss = loss_fct(shift_logits, shift_labels)
1137
+
1138
+ if not return_dict:
1139
+ output = (logits,) + outputs[1:]
1140
+ return (loss,) + output if loss is not None else output
1141
+
1142
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1143
+ output = CausalLMOutputWithPast(
1144
+ loss=loss,
1145
+ logits=logits,
1146
+ past_key_values=outputs.past_key_values,
1147
+ hidden_states=outputs.hidden_states,
1148
+ attentions=outputs.attentions,
1149
+ )
1150
+ output['logits'] = output['logits'].to(device)
1151
+ return output
1152
+
1153
+ def prepare_inputs_for_generation(
1154
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1155
+ ):
1156
+ if past_key_values is not None:
1157
+ past_length = past_key_values[0][0].shape[2]
1158
+
1159
+ # Some generation methods already pass only the last input ID
1160
+ if input_ids.shape[1] > past_length:
1161
+ remove_prefix_length = past_length
1162
+ else:
1163
+ # Default to old behavior: keep only final ID
1164
+ remove_prefix_length = input_ids.shape[1] - 1
1165
+
1166
+ input_ids = input_ids[:, remove_prefix_length:]
1167
+
1168
+ position_ids = kwargs.get('position_ids', None)
1169
+ if attention_mask is not None and position_ids is None:
1170
+ # create position_ids on the fly for batch generation
1171
+ position_ids = attention_mask.long().cumsum(-1) - 1
1172
+ position_ids.masked_fill_(attention_mask == 0, 1)
1173
+ if past_key_values:
1174
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1175
+
1176
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1177
+ if inputs_embeds is not None and past_key_values is None:
1178
+ model_inputs = {'inputs_embeds': inputs_embeds}
1179
+ else:
1180
+ model_inputs = {'input_ids': input_ids}
1181
+
1182
+ model_inputs.update(
1183
+ {
1184
+ 'position_ids': position_ids,
1185
+ 'past_key_values': past_key_values,
1186
+ 'use_cache': kwargs.get('use_cache'),
1187
+ 'attention_mask': attention_mask,
1188
+ }
1189
+ )
1190
+ return model_inputs
1191
+
1192
+ @staticmethod
1193
+ def _reorder_cache(past_key_values, beam_idx):
1194
+ reordered_past = ()
1195
+ for layer_past in past_key_values:
1196
+ reordered_past += (
1197
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1198
+ )
1199
+ return reordered_past
1200
+
1201
+ def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = [], meta_instruction=''):
1202
+ if tokenizer.add_bos_token:
1203
+ prompt = ''
1204
+ else:
1205
+ prompt = tokenizer.bos_token
1206
+ if meta_instruction:
1207
+ prompt += f"""<|im_start|>system\n{meta_instruction}<|im_end|>\n"""
1208
+ for record in history:
1209
+ prompt += f"""<|im_start|>user\n{record[0]}<|im_end|>\n<|im_start|>assistant\n{record[1]}<|im_end|>\n"""
1210
+ prompt += f"""<|im_start|>user\n{query}<|im_end|>\n<|im_start|>assistant\n"""
1211
+ return tokenizer([prompt], return_tensors='pt')
1212
+
1213
+ @torch.no_grad()
1214
+ def chat(
1215
+ self,
1216
+ tokenizer,
1217
+ query: str,
1218
+ history: List[Tuple[str, str]] = [],
1219
+ streamer: Optional[BaseStreamer] = None,
1220
+ max_new_tokens: int = 1024,
1221
+ do_sample: bool = True,
1222
+ temperature: float = 0.8,
1223
+ top_p: float = 0.8,
1224
+ meta_instruction: str = 'You are an AI assistant whose name is InternLM (书生·浦语).\n'
1225
+ '- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n'
1226
+ '- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.',
1227
+ **kwargs,
1228
+ ):
1229
+ inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
1230
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
1231
+ # also add end-of-assistant token in eos token id to avoid unnecessary generation
1232
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids(['<|im_end|>'])[0]]
1233
+ outputs = self.generate(
1234
+ **inputs,
1235
+ streamer=streamer,
1236
+ max_new_tokens=max_new_tokens,
1237
+ do_sample=do_sample,
1238
+ temperature=temperature,
1239
+ top_p=top_p,
1240
+ eos_token_id=eos_token_id,
1241
+ **kwargs,
1242
+ )
1243
+ outputs = outputs[0].cpu().tolist()[len(inputs['input_ids'][0]):]
1244
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
1245
+ response = response.split('<|im_end|>')[0]
1246
+ history = history + [(query, response)]
1247
+ return response, history
1248
+
1249
+ @torch.no_grad()
1250
+ def stream_chat(
1251
+ self,
1252
+ tokenizer,
1253
+ query: str,
1254
+ history: List[Tuple[str, str]] = [],
1255
+ max_new_tokens: int = 1024,
1256
+ do_sample: bool = True,
1257
+ temperature: float = 0.8,
1258
+ top_p: float = 0.8,
1259
+ **kwargs,
1260
+ ):
1261
+ """
1262
+ Return a generator in format: (response, history)
1263
+ Eg.
1264
+ ('你好,有什么可以帮助您的吗', [('你好', '你好,有什么可以帮助您的吗')])
1265
+ ('你好,有什么可以帮助您的吗?', [('你好', '你好,有什么可以帮助您的吗?')])
1266
+ """
1267
+ if BaseStreamer is None:
1268
+ raise ModuleNotFoundError(
1269
+ 'The version of `transformers` is too low. Please make sure '
1270
+ 'that you have installed `transformers>=4.28.0`.'
1271
+ )
1272
+
1273
+ response_queue = queue.Queue(maxsize=20)
1274
+
1275
+ class ChatStreamer(BaseStreamer):
1276
+ def __init__(self, tokenizer) -> None:
1277
+ super().__init__()
1278
+ self.tokenizer = tokenizer
1279
+ self.queue = response_queue
1280
+ self.query = query
1281
+ self.history = history
1282
+ self.response = ''
1283
+ self.cache = []
1284
+ self.received_inputs = False
1285
+ self.queue.put((self.response, history + [(self.query, self.response)]))
1286
+
1287
+ def put(self, value):
1288
+ if len(value.shape) > 1 and value.shape[0] > 1:
1289
+ raise ValueError('ChatStreamer only supports batch size 1')
1290
+ elif len(value.shape) > 1:
1291
+ value = value[0]
1292
+
1293
+ if not self.received_inputs:
1294
+ # The first received value is input_ids, ignore here
1295
+ self.received_inputs = True
1296
+ return
1297
+
1298
+ self.cache.extend(value.tolist())
1299
+ token = self.tokenizer.decode(self.cache, skip_special_tokens=True)
1300
+ if token.strip() != '<|im_end|>':
1301
+ self.response = self.response + token
1302
+ history = self.history + [(self.query, self.response)]
1303
+ self.queue.put((self.response, history))
1304
+ self.cache = []
1305
+ else:
1306
+ self.end()
1307
+
1308
+ def end(self):
1309
+ self.queue.put(None)
1310
+
1311
+ def stream_producer():
1312
+ return self.chat(
1313
+ tokenizer=tokenizer,
1314
+ query=query,
1315
+ streamer=ChatStreamer(tokenizer=tokenizer),
1316
+ history=history,
1317
+ max_new_tokens=max_new_tokens,
1318
+ do_sample=do_sample,
1319
+ temperature=temperature,
1320
+ top_p=top_p,
1321
+ **kwargs,
1322
+ )
1323
+
1324
+ def consumer():
1325
+ producer = threading.Thread(target=stream_producer)
1326
+ producer.start()
1327
+ while True:
1328
+ res = response_queue.get()
1329
+ if res is None:
1330
+ return
1331
+ yield res
1332
+
1333
+ return consumer()
1334
+
1335
+
1336
+ # Copied from transformers.model.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
1337
+ @add_start_docstrings(
1338
+ """
1339
+ The InternLM2 Model transformer with a sequence classification head on top (linear layer).
1340
+
1341
+ [`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
1342
+ as other causal models (e.g. GPT-2) do.
1343
+
1344
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1345
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1346
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1347
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1348
+ each row of the batch).
1349
+ """,
1350
+ InternLM2_START_DOCSTRING,
1351
+ )
1352
+ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
1353
+ def __init__(self, config):
1354
+ super().__init__(config)
1355
+ self.num_labels = config.num_labels
1356
+ self.model = InternLM2Model(config)
1357
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1358
+
1359
+ # Initialize weights and apply final processing
1360
+ self.post_init()
1361
+
1362
+ def get_input_embeddings(self):
1363
+ return self.model.tok_embeddings
1364
+
1365
+ def set_input_embeddings(self, value):
1366
+ self.model.tok_embeddings = value
1367
+
1368
+ @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
1369
+ def forward(
1370
+ self,
1371
+ input_ids: torch.LongTensor = None,
1372
+ attention_mask: Optional[torch.Tensor] = None,
1373
+ position_ids: Optional[torch.LongTensor] = None,
1374
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1375
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1376
+ labels: Optional[torch.LongTensor] = None,
1377
+ use_cache: Optional[bool] = None,
1378
+ output_attentions: Optional[bool] = None,
1379
+ output_hidden_states: Optional[bool] = None,
1380
+ return_dict: Optional[bool] = None,
1381
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1382
+ r"""
1383
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1384
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1385
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1386
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1387
+ """
1388
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1389
+
1390
+ transformer_outputs = self.model(
1391
+ input_ids,
1392
+ attention_mask=attention_mask,
1393
+ position_ids=position_ids,
1394
+ past_key_values=past_key_values,
1395
+ inputs_embeds=inputs_embeds,
1396
+ use_cache=use_cache,
1397
+ output_attentions=output_attentions,
1398
+ output_hidden_states=output_hidden_states,
1399
+ return_dict=return_dict,
1400
+ )
1401
+ hidden_states = transformer_outputs[0]
1402
+ logits = self.score(hidden_states)
1403
+
1404
+ if input_ids is not None:
1405
+ batch_size = input_ids.shape[0]
1406
+ else:
1407
+ batch_size = inputs_embeds.shape[0]
1408
+
1409
+ if self.config.pad_token_id is None and batch_size != 1:
1410
+ raise ValueError('Cannot handle batch sizes > 1 if no padding token is defined.')
1411
+ if self.config.pad_token_id is None:
1412
+ sequence_lengths = -1
1413
+ else:
1414
+ if input_ids is not None:
1415
+ sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
1416
+ logits.device
1417
+ )
1418
+ else:
1419
+ sequence_lengths = -1
1420
+
1421
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1422
+
1423
+ loss = None
1424
+ if labels is not None:
1425
+ labels = labels.to(logits.device)
1426
+ if self.config.problem_type is None:
1427
+ if self.num_labels == 1:
1428
+ self.config.problem_type = 'regression'
1429
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1430
+ self.config.problem_type = 'single_label_classification'
1431
+ else:
1432
+ self.config.problem_type = 'multi_label_classification'
1433
+
1434
+ if self.config.problem_type == 'regression':
1435
+ loss_fct = MSELoss()
1436
+ if self.num_labels == 1:
1437
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1438
+ else:
1439
+ loss = loss_fct(pooled_logits, labels)
1440
+ elif self.config.problem_type == 'single_label_classification':
1441
+ loss_fct = CrossEntropyLoss()
1442
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1443
+ elif self.config.problem_type == 'multi_label_classification':
1444
+ loss_fct = BCEWithLogitsLoss()
1445
+ loss = loss_fct(pooled_logits, labels)
1446
+ if not return_dict:
1447
+ output = (pooled_logits,) + transformer_outputs[1:]
1448
+ return ((loss,) + output) if loss is not None else output
1449
+
1450
+ return SequenceClassifierOutputWithPast(
1451
+ loss=loss,
1452
+ logits=pooled_logits,
1453
+ past_key_values=transformer_outputs.past_key_values,
1454
+ hidden_states=transformer_outputs.hidden_states,
1455
+ attentions=transformer_outputs.attentions,
1456
+ )
modeling_internvl_chat.py ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # --------------------------------------------------------
2
+ # InternVL
3
+ # Copyright (c) 2024 OpenGVLab
4
+ # Licensed under The MIT License [see LICENSE for details]
5
+ # --------------------------------------------------------
6
+ import warnings
7
+ from typing import Any, List, Optional, Tuple, Union
8
+
9
+ import torch.utils.checkpoint
10
+ import transformers
11
+ from torch import nn
12
+ from torch.nn import CrossEntropyLoss
13
+ from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
14
+ LlamaTokenizer, Qwen2ForCausalLM)
15
+ from transformers.modeling_outputs import CausalLMOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import ModelOutput, logging
18
+
19
+ from .configuration_internvl_chat import InternVLChatConfig
20
+ from .conversation import get_conv_template
21
+ from .modeling_intern_vit import InternVisionModel, has_flash_attn
22
+ from .modeling_internlm2 import InternLM2ForCausalLM
23
+
24
+ logger = logging.get_logger(__name__)
25
+
26
+
27
+ def version_cmp(v1, v2, op='eq'):
28
+ import operator
29
+
30
+ from packaging import version
31
+ op_func = getattr(operator, op)
32
+ return op_func(version.parse(v1), version.parse(v2))
33
+
34
+
35
+ class InternVLChatModel(PreTrainedModel):
36
+ config_class = InternVLChatConfig
37
+ main_input_name = 'pixel_values'
38
+ _supports_flash_attn_2 = True
39
+ supports_gradient_checkpointing = True
40
+ _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer',
41
+ 'Qwen2DecoderLayer']
42
+
43
+ def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
44
+ super().__init__(config)
45
+
46
+ assert version_cmp(transformers.__version__, '4.36.2', 'ge')
47
+ image_size = config.force_image_size or config.vision_config.image_size
48
+ patch_size = config.vision_config.patch_size
49
+ self.patch_size = patch_size
50
+ self.select_layer = config.select_layer
51
+ self.template = config.template
52
+ self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
53
+ self.downsample_ratio = config.downsample_ratio
54
+ self.ps_version = config.ps_version
55
+ use_flash_attn = use_flash_attn if has_flash_attn else False
56
+ config.vision_config.use_flash_attn = True if use_flash_attn else False
57
+ config.llm_config.attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
58
+
59
+ logger.info(f'num_image_token: {self.num_image_token}')
60
+ logger.info(f'ps_version: {self.ps_version}')
61
+ if vision_model is not None:
62
+ self.vision_model = vision_model
63
+ else:
64
+ self.vision_model = InternVisionModel(config.vision_config)
65
+ if language_model is not None:
66
+ self.language_model = language_model
67
+ else:
68
+ if config.llm_config.architectures[0] == 'LlamaForCausalLM':
69
+ self.language_model = LlamaForCausalLM(config.llm_config)
70
+ elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM':
71
+ self.language_model = InternLM2ForCausalLM(config.llm_config)
72
+ elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
73
+ self.language_model = Qwen2ForCausalLM(config.llm_config)
74
+ else:
75
+ raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
76
+
77
+ vit_hidden_size = config.vision_config.hidden_size
78
+ llm_hidden_size = config.llm_config.hidden_size
79
+
80
+ self.mlp1 = nn.Sequential(
81
+ nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
82
+ nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
83
+ nn.GELU(),
84
+ nn.Linear(llm_hidden_size, llm_hidden_size)
85
+ )
86
+
87
+ self.img_context_token_id = None
88
+ self.conv_template = get_conv_template(self.template)
89
+ self.system_message = self.conv_template.system_message
90
+
91
+ def forward(
92
+ self,
93
+ pixel_values: torch.FloatTensor,
94
+ input_ids: torch.LongTensor = None,
95
+ attention_mask: Optional[torch.Tensor] = None,
96
+ position_ids: Optional[torch.LongTensor] = None,
97
+ image_flags: Optional[torch.LongTensor] = None,
98
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
99
+ labels: Optional[torch.LongTensor] = None,
100
+ use_cache: Optional[bool] = None,
101
+ output_attentions: Optional[bool] = None,
102
+ output_hidden_states: Optional[bool] = None,
103
+ return_dict: Optional[bool] = None,
104
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
105
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
106
+
107
+ image_flags = image_flags.squeeze(-1)
108
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
109
+
110
+ vit_embeds = self.extract_feature(pixel_values)
111
+ vit_embeds = vit_embeds[image_flags == 1]
112
+ vit_batch_size = pixel_values.shape[0]
113
+
114
+ B, N, C = input_embeds.shape
115
+ input_embeds = input_embeds.reshape(B * N, C)
116
+
117
+ if torch.distributed.get_rank() == 0:
118
+ print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
119
+
120
+ input_ids = input_ids.reshape(B * N)
121
+ selected = (input_ids == self.img_context_token_id)
122
+ try:
123
+ input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
124
+ except Exception as e:
125
+ vit_embeds = vit_embeds.reshape(-1, C)
126
+ print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
127
+ f'vit_embeds.shape={vit_embeds.shape}')
128
+ n_token = min(selected.sum(), vit_embeds.size(0))
129
+ input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]
130
+
131
+ input_embeds = input_embeds.reshape(B, N, C)
132
+
133
+ outputs = self.language_model(
134
+ inputs_embeds=input_embeds,
135
+ attention_mask=attention_mask,
136
+ position_ids=position_ids,
137
+ past_key_values=past_key_values,
138
+ use_cache=use_cache,
139
+ output_attentions=output_attentions,
140
+ output_hidden_states=output_hidden_states,
141
+ return_dict=return_dict,
142
+ )
143
+ logits = outputs.logits
144
+
145
+ loss = None
146
+ if labels is not None:
147
+ # Shift so that tokens < n predict n
148
+ shift_logits = logits[..., :-1, :].contiguous()
149
+ shift_labels = labels[..., 1:].contiguous()
150
+ # Flatten the tokens
151
+ loss_fct = CrossEntropyLoss()
152
+ shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
153
+ shift_labels = shift_labels.view(-1)
154
+ # Enable model parallelism
155
+ shift_labels = shift_labels.to(shift_logits.device)
156
+ loss = loss_fct(shift_logits, shift_labels)
157
+
158
+ if not return_dict:
159
+ output = (logits,) + outputs[1:]
160
+ return (loss,) + output if loss is not None else output
161
+
162
+ return CausalLMOutputWithPast(
163
+ loss=loss,
164
+ logits=logits,
165
+ past_key_values=outputs.past_key_values,
166
+ hidden_states=outputs.hidden_states,
167
+ attentions=outputs.attentions,
168
+ )
169
+
170
+ def pixel_shuffle(self, x, scale_factor=0.5):
171
+ n, w, h, c = x.size()
172
+ # N, W, H, C --> N, W, H * scale, C // scale
173
+ x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
174
+ # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
175
+ x = x.permute(0, 2, 1, 3).contiguous()
176
+ # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
177
+ x = x.view(n, int(h * scale_factor), int(w * scale_factor),
178
+ int(c / (scale_factor * scale_factor)))
179
+ if self.ps_version == 'v1':
180
+ warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
181
+ 'which results in a transposed image.')
182
+ else:
183
+ x = x.permute(0, 2, 1, 3).contiguous()
184
+ return x
185
+
186
+ def extract_feature(self, pixel_values):
187
+ if self.select_layer == -1:
188
+ vit_embeds = self.vision_model(
189
+ pixel_values=pixel_values,
190
+ output_hidden_states=False,
191
+ return_dict=True).last_hidden_state
192
+ else:
193
+ vit_embeds = self.vision_model(
194
+ pixel_values=pixel_values,
195
+ output_hidden_states=True,
196
+ return_dict=True).hidden_states[self.select_layer]
197
+ vit_embeds = vit_embeds[:, 1:, :]
198
+
199
+ h = w = int(vit_embeds.shape[1] ** 0.5)
200
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
201
+ vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
202
+ vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
203
+ vit_embeds = self.mlp1(vit_embeds)
204
+ return vit_embeds
205
+
206
+ def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
207
+ history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
208
+ IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
209
+ if history is not None or return_history:
210
+ print('Now multi-turn chat is not supported in batch_chat.')
211
+ raise NotImplementedError
212
+
213
+ if image_counts is not None:
214
+ num_patches_list = image_counts
215
+ print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
216
+
217
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
218
+ self.img_context_token_id = img_context_token_id
219
+
220
+ if verbose and pixel_values is not None:
221
+ image_bs = pixel_values.shape[0]
222
+ print(f'dynamic ViT batch size: {image_bs}')
223
+
224
+ queries = []
225
+ for idx, num_patches in enumerate(num_patches_list):
226
+ question = questions[idx]
227
+ if pixel_values is not None and '<image>' not in question:
228
+ question = '<image>\n' + question
229
+ template = get_conv_template(self.template)
230
+ template.system_message = self.system_message
231
+ template.append_message(template.roles[0], question)
232
+ template.append_message(template.roles[1], None)
233
+ query = template.get_prompt()
234
+
235
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
236
+ query = query.replace('<image>', image_tokens, 1)
237
+ queries.append(query)
238
+
239
+ tokenizer.padding_side = 'left'
240
+ model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
241
+ input_ids = model_inputs['input_ids'].cuda()
242
+ attention_mask = model_inputs['attention_mask'].cuda()
243
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep)
244
+ generation_config['eos_token_id'] = eos_token_id
245
+ generation_output = self.generate(
246
+ pixel_values=pixel_values,
247
+ input_ids=input_ids,
248
+ attention_mask=attention_mask,
249
+ **generation_config
250
+ )
251
+ responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
252
+ responses = [response.split(template.sep)[0].strip() for response in responses]
253
+ return responses
254
+
255
+ def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
256
+ num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
257
+ verbose=False):
258
+
259
+ if history is None and pixel_values is not None and '<image>' not in question:
260
+ question = '<image>\n' + question
261
+
262
+ if num_patches_list is None:
263
+ num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
264
+ assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
265
+
266
+ img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
267
+ self.img_context_token_id = img_context_token_id
268
+
269
+ template = get_conv_template(self.template)
270
+ template.system_message = self.system_message
271
+ eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
272
+
273
+ history = [] if history is None else history
274
+ for (old_question, old_answer) in history:
275
+ template.append_message(template.roles[0], old_question)
276
+ template.append_message(template.roles[1], old_answer)
277
+ template.append_message(template.roles[0], question)
278
+ template.append_message(template.roles[1], None)
279
+ query = template.get_prompt()
280
+
281
+ if verbose and pixel_values is not None:
282
+ image_bs = pixel_values.shape[0]
283
+ print(f'dynamic ViT batch size: {image_bs}')
284
+
285
+ for num_patches in num_patches_list:
286
+ image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
287
+ query = query.replace('<image>', image_tokens, 1)
288
+
289
+ model_inputs = tokenizer(query, return_tensors='pt')
290
+ input_ids = model_inputs['input_ids'].cuda()
291
+ attention_mask = model_inputs['attention_mask'].cuda()
292
+ generation_config['eos_token_id'] = eos_token_id
293
+ generation_output = self.generate(
294
+ pixel_values=pixel_values,
295
+ input_ids=input_ids,
296
+ attention_mask=attention_mask,
297
+ **generation_config
298
+ )
299
+ response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
300
+ response = response.split(template.sep.strip())[0].strip()
301
+ history.append((question, response))
302
+ if return_history:
303
+ return response, history
304
+ else:
305
+ query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
306
+ query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
307
+ if verbose:
308
+ print(query_to_print, response)
309
+ return response
310
+
311
+ @torch.no_grad()
312
+ def generate(
313
+ self,
314
+ pixel_values: Optional[torch.FloatTensor] = None,
315
+ input_ids: Optional[torch.FloatTensor] = None,
316
+ attention_mask: Optional[torch.LongTensor] = None,
317
+ visual_features: Optional[torch.FloatTensor] = None,
318
+ generation_config: Optional[GenerationConfig] = None,
319
+ output_hidden_states: Optional[bool] = None,
320
+ return_dict: Optional[bool] = None,
321
+ **generate_kwargs,
322
+ ) -> torch.LongTensor:
323
+
324
+ assert self.img_context_token_id is not None
325
+ if pixel_values is not None:
326
+ if visual_features is not None:
327
+ vit_embeds = visual_features
328
+ else:
329
+ vit_embeds = self.extract_feature(pixel_values)
330
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
331
+ B, N, C = input_embeds.shape
332
+ input_embeds = input_embeds.reshape(B * N, C)
333
+
334
+ input_ids = input_ids.reshape(B * N)
335
+ selected = (input_ids == self.img_context_token_id)
336
+ assert selected.sum() != 0
337
+ input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
338
+
339
+ input_embeds = input_embeds.reshape(B, N, C)
340
+ else:
341
+ input_embeds = self.language_model.get_input_embeddings()(input_ids)
342
+
343
+ outputs = self.language_model.generate(
344
+ inputs_embeds=input_embeds,
345
+ attention_mask=attention_mask,
346
+ generation_config=generation_config,
347
+ output_hidden_states=output_hidden_states,
348
+ # return_dict=return_dict, # return_dict is not supported in transformers 4.44
349
+ use_cache=True,
350
+ **generate_kwargs,
351
+ )
352
+
353
+ return outputs
354
+
355
+ @property
356
+ def lm_head(self):
357
+ return self.language_model.get_output_embeddings()
358
+
359
+ def get_input_embeddings(self):
360
+ return self.language_model.get_input_embeddings()
361
+
362
+ def get_output_embeddings(self):
363
+ return self.language_model.get_output_embeddings()
special_tokens_map.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|action_start|>",
6
+ "<|action_end|>",
7
+ "<|interpreter|>",
8
+ "<|plugin|>",
9
+ "<restate>",
10
+ "</restate>",
11
+ "<planning>",
12
+ "</planning>",
13
+ "<recollect>",
14
+ "</recollect>",
15
+ "<execution>",
16
+ "</execution>",
17
+ "<review>",
18
+ "</review>",
19
+ "<summarize>",
20
+ "</summarize>",
21
+ "<retry>",
22
+ "</retry>",
23
+ "<conclude>",
24
+ "</conclude>",
25
+ "<img>",
26
+ "</img>",
27
+ "<IMG_CONTEXT>",
28
+ "<quad>",
29
+ "</quad>",
30
+ "<ref>",
31
+ "</ref>",
32
+ "<box>",
33
+ "</box>"
34
+ ],
35
+ "bos_token": {
36
+ "content": "<s>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false
41
+ },
42
+ "eos_token": {
43
+ "content": "</s>",
44
+ "lstrip": false,
45
+ "normalized": false,
46
+ "rstrip": false,
47
+ "single_word": false
48
+ },
49
+ "pad_token": {
50
+ "content": "</s>",
51
+ "lstrip": false,
52
+ "normalized": false,
53
+ "rstrip": false,
54
+ "single_word": false
55
+ },
56
+ "unk_token": {
57
+ "content": "<unk>",
58
+ "lstrip": false,
59
+ "normalized": false,
60
+ "rstrip": false,
61
+ "single_word": false
62
+ }
63
+ }
tokenization_internlm3.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from shutil import copyfile
3
+ from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
4
+
5
+ import sentencepiece as spm
6
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
7
+ from transformers.utils import logging
8
+
9
+ if TYPE_CHECKING:
10
+ from transformers.tokenization_utils_base import TextInput
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
15
+
16
+ SPIECE_UNDERLINE = "▁"
17
+
18
+
19
+ class InternLM3Tokenizer(PreTrainedTokenizer):
20
+ """
21
+ Construct a InternLM3 tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
22
+ no padding token in the original model.
23
+
24
+ Args:
25
+ vocab_file (`str`):
26
+ Path to the vocabulary file.
27
+ unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
28
+ The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
29
+ token instead.
30
+ bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
31
+ The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
32
+ eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
33
+ The end of sequence token.
34
+ pad_token (`str` or `tokenizers.AddedToken`, *optional*):
35
+ A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
36
+ attention mechanisms or loss computation.
37
+ sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
38
+ Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
39
+ SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
40
+ to set:
41
+
42
+ - `enable_sampling`: Enable subword regularization.
43
+ - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
44
+
45
+ - `nbest_size = {0,1}`: No sampling is performed.
46
+ - `nbest_size > 1`: samples from the nbest_size results.
47
+ - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
48
+ using forward-filtering-and-backward-sampling algorithm.
49
+
50
+ - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
51
+ BPE-dropout.
52
+
53
+ add_bos_token (`bool`, *optional*, defaults to `True`):
54
+ Whether or not to add an `bos_token` at the start of sequences.
55
+ add_eos_token (`bool`, *optional*, defaults to `False`):
56
+ Whether or not to add an `eos_token` at the end of sequences.
57
+ clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
58
+ Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
59
+ extra spaces.
60
+ use_default_system_prompt (`bool`, *optional*, defaults to `False`):
61
+ Whether or not the default system prompt for InternLM3 should be used.
62
+ spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
63
+ Whether or not to add spaces between special tokens.
64
+ spaces_for_interleaved_special_tokens (`bool`, *optional*, defaults to `False`):
65
+ Whether or not to add spaces between special tokens that are interleaved with normal tokens.
66
+ add_prefix_space (`bool`, *optional*, defaults to `True`):
67
+ Whether or not to add an initial space to the input. This allows to treat the leading word just as any
68
+ other word. Again, this should be set with `from_slow=True` to make sure it's taken into account.
69
+ """
70
+
71
+ vocab_files_names = VOCAB_FILES_NAMES
72
+ model_input_names = ["input_ids", "attention_mask"]
73
+
74
+ def __init__(
75
+ self,
76
+ vocab_file,
77
+ unk_token="<unk>",
78
+ bos_token="<s>",
79
+ eos_token="</s>",
80
+ pad_token=None,
81
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
82
+ add_bos_token=True,
83
+ add_eos_token=False,
84
+ clean_up_tokenization_spaces=False,
85
+ use_default_system_prompt=False,
86
+ spaces_between_special_tokens=False,
87
+ spaces_for_interleaved_special_tokens=False,
88
+ add_prefix_space=True,
89
+ **kwargs,
90
+ ):
91
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
92
+ bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
93
+ eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
94
+ unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
95
+ pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
96
+
97
+ self.vocab_file = vocab_file
98
+ self.add_bos_token = add_bos_token
99
+ self.add_eos_token = add_eos_token
100
+ self.use_default_system_prompt = use_default_system_prompt
101
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
102
+ self.sp_model.Load(vocab_file)
103
+ self.add_prefix_space = add_prefix_space
104
+ self.spaces_for_interleaved_special_tokens = spaces_for_interleaved_special_tokens
105
+
106
+ vocab_size = self.sp_model.get_piece_size()
107
+ self.decoder = {i: self.sp_model.id_to_piece(i) for i in range(vocab_size)}
108
+
109
+ super().__init__(
110
+ bos_token=bos_token,
111
+ eos_token=eos_token,
112
+ unk_token=unk_token,
113
+ pad_token=pad_token,
114
+ add_bos_token=add_bos_token,
115
+ add_eos_token=add_eos_token,
116
+ sp_model_kwargs=sp_model_kwargs,
117
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
118
+ use_default_system_prompt=use_default_system_prompt,
119
+ spaces_between_special_tokens=spaces_between_special_tokens,
120
+ add_prefix_space=add_prefix_space,
121
+ **kwargs,
122
+ )
123
+
124
+ def __getstate__(self):
125
+ state = self.__dict__.copy()
126
+ state["sp_model"] = None
127
+ state["sp_model_proto"] = self.sp_model.serialized_model_proto()
128
+ return state
129
+
130
+ def __setstate__(self, d):
131
+ self.__dict__.update(d)
132
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
133
+ self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
134
+
135
+ @property
136
+ def vocab_size(self):
137
+ """Returns vocab size"""
138
+ return self.sp_model.get_piece_size()
139
+
140
+ def get_vocab(self):
141
+ """Returns vocab as a dict"""
142
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
143
+ vocab.update(self.added_tokens_encoder)
144
+ return vocab
145
+
146
+ def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
147
+ """
148
+ Args:
149
+ text: TextInput
150
+ Simply calls PreTrainedTokenizer's method
151
+ """
152
+ return super().tokenize(text, **kwargs)
153
+
154
+ def _tokenize(self, text, **kwargs):
155
+ """
156
+ Args:
157
+ text: TextInput
158
+ Returns a tokenized string. The Gemma tokenizer never adds a prefix space.
159
+ """
160
+ return self.sp_model.encode(text, out_type=str)
161
+
162
+ def _convert_token_to_id(self, token):
163
+ """Converts a token (str) in an id using the vocab."""
164
+ return self.sp_model.piece_to_id(token)
165
+
166
+ def _convert_id_to_token(self, index):
167
+ """Converts an index (integer) in a token (str) using the vocab."""
168
+ return self.decoder.get(index, "")
169
+
170
+ def convert_tokens_to_string(self, tokens):
171
+ """Converts a sequence of tokens (string) in a single string."""
172
+ # since we manually add the prefix space, we have to remove it when decoding
173
+ if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
174
+ tokens[0] = tokens[0][1:]
175
+
176
+ current_sub_tokens = []
177
+ out_string = ""
178
+ prev_is_special = False
179
+ for i, token in enumerate(tokens):
180
+ # make sure that special tokens are not decoded using sentencepiece model
181
+ if token in self.all_special_tokens:
182
+ if not prev_is_special and i != 0 and self.spaces_for_interleaved_special_tokens:
183
+ out_string += " "
184
+ out_string += self.sp_model.decode(current_sub_tokens) + token
185
+ prev_is_special = True
186
+ current_sub_tokens = []
187
+ else:
188
+ if (
189
+ prev_is_special
190
+ and i == 1
191
+ and self.add_prefix_space
192
+ and not token.startswith(SPIECE_UNDERLINE)
193
+ and self.spaces_for_interleaved_special_tokens
194
+ ):
195
+ out_string += " "
196
+ current_sub_tokens.append(token)
197
+ prev_is_special = False
198
+ out_string += self.sp_model.decode(current_sub_tokens)
199
+ return out_string
200
+
201
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
202
+ """
203
+ Save the vocabulary and special tokens file to a directory.
204
+
205
+ Args:
206
+ save_directory (`str`):
207
+ The directory in which to save the vocabulary.
208
+
209
+ Returns:
210
+ `Tuple(str)`: Paths to the files saved.
211
+ """
212
+ if not os.path.isdir(save_directory):
213
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
214
+ return
215
+ out_vocab_file = os.path.join(save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
216
+
217
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
218
+ copyfile(self.vocab_file, out_vocab_file)
219
+ elif not os.path.isfile(self.vocab_file):
220
+ with open(out_vocab_file, "wb") as fi:
221
+ content_spiece_model = self.sp_model.serialized_model_proto()
222
+ fi.write(content_spiece_model)
223
+
224
+ return (out_vocab_file,)
225
+
226
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
227
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
228
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
229
+
230
+ output = bos_token_id + token_ids_0 + eos_token_id
231
+
232
+ if token_ids_1 is not None:
233
+ output = output + bos_token_id + token_ids_1 + eos_token_id
234
+
235
+ return output
236
+
237
+ def get_special_tokens_mask(
238
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
239
+ ) -> List[int]:
240
+ """
241
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
242
+ special tokens using the tokenizer `prepare_for_model` method.
243
+
244
+ Args:
245
+ token_ids_0 (`List[int]`):
246
+ List of IDs.
247
+ token_ids_1 (`List[int]`, *optional*):
248
+ Optional second list of IDs for sequence pairs.
249
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
250
+ Whether or not the token list is already formatted with special tokens for the model.
251
+
252
+ Returns:
253
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
254
+ """
255
+ if already_has_special_tokens:
256
+ return super().get_special_tokens_mask(token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True)
257
+
258
+ bos_token_id = [1] if self.add_bos_token else []
259
+ eos_token_id = [1] if self.add_eos_token else []
260
+
261
+ if token_ids_1 is None:
262
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
263
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id + bos_token_id + ([0] * len(token_ids_1)) + eos_token_id
264
+
265
+ def create_token_type_ids_from_sequences(self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None) -> List[int]:
266
+ """
267
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
268
+ sequence pair mask has the following format:
269
+
270
+ ```
271
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
272
+ | first sequence | second sequence |
273
+ ```
274
+
275
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
276
+
277
+ Args:
278
+ token_ids_0 (`List[int]`):
279
+ List of ids.
280
+ token_ids_1 (`List[int]`, *optional*):
281
+ Optional second list of IDs for sequence pairs.
282
+
283
+ Returns:
284
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
285
+ """
286
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
287
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
288
+
289
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
290
+
291
+ if token_ids_1 is not None:
292
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
293
+
294
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcacff3229854f5103ee7a85473a30ca9a8b3a68f3aae9b7479574b23ac2256b
3
+ size 2475075
tokenizer_config.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": true,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "128111": {
31
+ "content": "<restate>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "128112": {
39
+ "content": "</restate>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "128113": {
47
+ "content": "<planning>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "128114": {
55
+ "content": "</planning>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "128115": {
63
+ "content": "<recollect>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "128116": {
71
+ "content": "</recollect>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "128117": {
79
+ "content": "<execution>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "128118": {
87
+ "content": "</execution>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "128119": {
95
+ "content": "<review>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "128120": {
103
+ "content": "</review>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "128121": {
111
+ "content": "<summarize>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "128122": {
119
+ "content": "</summarize>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "128123": {
127
+ "content": "<retry>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "128124": {
135
+ "content": "</retry>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "128125": {
143
+ "content": "<conclude>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "128126": {
151
+ "content": "</conclude>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "128127": {
159
+ "content": "<|plugin|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "128128": {
167
+ "content": "<|interpreter|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "128129": {
175
+ "content": "<|action_end|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "128130": {
183
+ "content": "<|action_start|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "128131": {
191
+ "content": "<|im_end|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "128132": {
199
+ "content": "<|im_start|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "128133": {
207
+ "content": "<img>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "128134": {
215
+ "content": "</img>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": false,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "128135": {
223
+ "content": "<IMG_CONTEXT>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": false,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "128136": {
231
+ "content": "<quad>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": false,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "128137": {
239
+ "content": "</quad>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": false,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "128138": {
247
+ "content": "<ref>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": false,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "128139": {
255
+ "content": "</ref>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": false,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "128140": {
263
+ "content": "<box>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": false,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "128141": {
271
+ "content": "</box>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": false,
275
+ "single_word": false,
276
+ "special": true
277
+ }
278
+ },
279
+ "additional_special_tokens": [
280
+ "<|im_start|>",
281
+ "<|im_end|>",
282
+ "<|action_start|>",
283
+ "<|action_end|>",
284
+ "<|interpreter|>",
285
+ "<|plugin|>",
286
+ "<restate>",
287
+ "</restate>",
288
+ "<planning>",
289
+ "</planning>",
290
+ "<recollect>",
291
+ "</recollect>",
292
+ "<execution>",
293
+ "</execution>",
294
+ "<review>",
295
+ "</review>",
296
+ "<summarize>",
297
+ "</summarize>",
298
+ "<retry>",
299
+ "</retry>",
300
+ "<conclude>",
301
+ "</conclude>",
302
+ "<img>",
303
+ "</img>",
304
+ "<IMG_CONTEXT>",
305
+ "<quad>",
306
+ "</quad>",
307
+ "<ref>",
308
+ "</ref>",
309
+ "<box>",
310
+ "</box>"
311
+ ],
312
+ "auto_map": {
313
+ "AutoTokenizer": [
314
+ "tokenization_internlm3.InternLM3Tokenizer",
315
+ null
316
+ ]
317
+ },
318
+ "bos_token": "<s>",
319
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
320
+ "clean_up_tokenization_spaces": false,
321
+ "eos_token": "</s>",
322
+ "extra_special_tokens": {},
323
+ "model_max_length": 1000000,
324
+ "pad_token": "</s>",
325
+ "sp_model_kwargs": {},
326
+ "spaces_between_special_tokens": false,
327
+ "tokenizer_class": "InternLM3Tokenizer",
328
+ "unk_token": "<unk>",
329
+ "use_default_system_prompt": false
330
+ }