|
''' |
|
CopyRight @DeepGlint 2025 |
|
''' |
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig |
|
|
|
|
|
def build_vision_tower(model_cfg, **kwargs): |
|
vision_tower = getattr(model_cfg, "vision_tower_config", getattr(model_cfg, "vision_tower", None)) |
|
return CLIPVisionTower(vision_tower, args=model_cfg, **kwargs) |
|
|
|
|
|
class CLIPVisionTower(nn.Module): |
|
def __init__(self, vision_tower, args, delay_load=False): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
|
|
self.vision_tower_cfg = vision_tower |
|
self.vision_tower_processor = args.vision_tower_processor |
|
self.select_layer = args.mm_vision_select_layer |
|
self.select_feature = getattr(args, "mm_vision_select_feature", "patch") |
|
|
|
if not delay_load: |
|
self.init_model() |
|
elif getattr(args, "unfreeze_mm_vision_tower", False): |
|
|
|
self.init_model() |
|
elif hasattr(args, "mm_tunable_parts") and "mm_vision_tower" in args.mm_tunable_parts: |
|
self.init_model() |
|
else: |
|
raise RuntimeError("Not support now, please check config.json or contact us") |
|
|
|
def init_model(self, device_map=None): |
|
if self.is_loaded: |
|
return |
|
vision_tower_config = CLIPVisionConfig().from_dict(self.vision_tower_cfg) |
|
self.image_processor = CLIPImageProcessor(**self.vision_tower_processor) |
|
self.vision_tower = CLIPVisionModel(config=vision_tower_config) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def feature_select(self, image_forward_outs): |
|
select_feature_type = self.select_feature |
|
|
|
if self.select_feature in ["slicefour_patch", "slicefour_cls_patch"]: |
|
select_every_k_layer = len(image_forward_outs.hidden_states) // 4 |
|
image_features = torch.cat([image_forward_outs.hidden_states[i] for i in range(select_every_k_layer + self.select_layer, len(image_forward_outs.hidden_states), select_every_k_layer)], dim=-1) |
|
select_feature_type = select_feature_type.replace("slicefour_", "") |
|
elif self.select_feature in ["slice_m25811_f6_patch", "slice_m25811_f6_cls_patch"]: |
|
select_layers = [-2, -5, -8, -11, 6] |
|
image_features = torch.cat([image_forward_outs.hidden_states[i] for i in select_layers], dim=-1) |
|
select_feature_type = select_feature_type.replace("slice_m25811_f6_", "") |
|
else: |
|
image_features = image_forward_outs.hidden_states[self.select_layer] |
|
|
|
if select_feature_type == "patch": |
|
image_features = image_features[:, 1:] |
|
elif select_feature_type == "cls_patch": |
|
image_features = image_features |
|
else: |
|
raise ValueError(f"Unexpected select feature: {select_feature_type}") |
|
return image_features |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) |
|
image_feature = self.feature_select(image_forward_out).to(image.dtype) |
|
image_features.append(image_feature) |
|
else: |
|
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) |
|
image_features = self.feature_select(image_forward_outs).to(images.dtype) |
|
|
|
return image_features |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_tower.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_tower.device |
|
|
|
@property |
|
def config(self): |
|
if self.is_loaded: |
|
return self.vision_tower.config |
|
else: |
|
return self.cfg_only |
|
|
|
@property |
|
def hidden_size(self): |
|
_hidden_size = self.config.hidden_size |
|
if "slicefour" in self.select_feature: |
|
_hidden_size *= 4 |
|
if "slice_m25811_f6" in self.select_feature: |
|
_hidden_size *= 5 |
|
return _hidden_size |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
return self.config.image_size // self.config.patch_size |
|
|
|
@property |
|
def num_patches(self): |
|
_num_patches = (self.config.image_size // self.config.patch_size) ** 2 |
|
if "cls_patch" in self.select_feature: |
|
_num_patches += 1 |
|
return _num_patches |
|
|
|
@property |
|
def image_size(self): |
|
return self.config.image_size |