|
''' |
|
Merge files from META Sam project @DeepGlint 2025 |
|
https://github.com/facebookresearch/segment-anything |
|
''' |
|
|
|
|
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
from typing import List, Dict, Any, Tuple, Type, Optional |
|
from functools import partial |
|
|
|
|
|
def text2sam_projection_layer(config): |
|
in_dim, out_dim = config.hidden_size, 256 |
|
modules = [nn.Linear(in_dim, out_dim)] |
|
for _ in range(1, 2): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(out_dim, out_dim)) |
|
return nn.Sequential(*modules) |
|
|
|
|
|
def build_sam_vit_h(): |
|
return _build_sam( |
|
encoder_embed_dim=1280, |
|
encoder_depth=32, |
|
encoder_num_heads=16, |
|
encoder_global_attn_indexes=[7, 15, 23, 31], |
|
) |
|
|
|
|
|
def _build_sam( |
|
encoder_embed_dim, |
|
encoder_depth, |
|
encoder_num_heads, |
|
encoder_global_attn_indexes, |
|
): |
|
prompt_embed_dim = 256 |
|
image_size = 1024 |
|
vit_patch_size = 16 |
|
image_embedding_size = image_size // vit_patch_size |
|
sam = Sam( |
|
image_encoder=ImageEncoderViT( |
|
depth=encoder_depth, |
|
embed_dim=encoder_embed_dim, |
|
img_size=image_size, |
|
mlp_ratio=4, |
|
norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), |
|
num_heads=encoder_num_heads, |
|
patch_size=vit_patch_size, |
|
qkv_bias=True, |
|
use_rel_pos=True, |
|
global_attn_indexes=encoder_global_attn_indexes, |
|
window_size=14, |
|
out_chans=prompt_embed_dim, |
|
), |
|
prompt_encoder=PromptEncoder( |
|
embed_dim=prompt_embed_dim, |
|
image_embedding_size=(image_embedding_size, image_embedding_size), |
|
input_image_size=(image_size, image_size), |
|
mask_in_chans=16, |
|
), |
|
mask_decoder=MaskDecoder( |
|
num_multimask_outputs=3, |
|
transformer=TwoWayTransformer( |
|
depth=2, |
|
embedding_dim=prompt_embed_dim, |
|
mlp_dim=2048, |
|
num_heads=8, |
|
), |
|
transformer_dim=prompt_embed_dim, |
|
iou_head_depth=3, |
|
iou_head_hidden_dim=256, |
|
), |
|
pixel_mean=[123.675, 116.28, 103.53], |
|
pixel_std=[58.395, 57.12, 57.375], |
|
) |
|
sam.eval() |
|
return sam |
|
|
|
|
|
def window_partition( |
|
x: torch.Tensor, window_size: int |
|
) -> Tuple[torch.Tensor, Tuple[int, int]]: |
|
""" |
|
Partition into non-overlapping windows with padding if needed. |
|
Args: |
|
x (tensor): input tokens with [B, H, W, C]. |
|
window_size (int): window size. |
|
|
|
Returns: |
|
windows: windows after partition with [B * num_windows, window_size, window_size, C]. |
|
(Hp, Wp): padded height and width before partition |
|
""" |
|
B, H, W, C = x.shape |
|
|
|
pad_h = (window_size - H % window_size) % window_size |
|
pad_w = (window_size - W % window_size) % window_size |
|
if pad_h > 0 or pad_w > 0: |
|
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) |
|
Hp, Wp = H + pad_h, W + pad_w |
|
|
|
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) |
|
windows = ( |
|
x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) |
|
) |
|
return windows, (Hp, Wp) |
|
|
|
|
|
def window_unpartition( |
|
windows: torch.Tensor, |
|
window_size: int, |
|
pad_hw: Tuple[int, int], |
|
hw: Tuple[int, int], |
|
) -> torch.Tensor: |
|
""" |
|
Window unpartition into original sequences and removing padding. |
|
Args: |
|
windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. |
|
window_size (int): window size. |
|
pad_hw (Tuple): padded height and width (Hp, Wp). |
|
hw (Tuple): original height and width (H, W) before padding. |
|
|
|
Returns: |
|
x: unpartitioned sequences with [B, H, W, C]. |
|
""" |
|
Hp, Wp = pad_hw |
|
H, W = hw |
|
B = windows.shape[0] // (Hp * Wp // window_size // window_size) |
|
x = windows.view( |
|
B, Hp // window_size, Wp // window_size, window_size, window_size, -1 |
|
) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) |
|
|
|
if Hp > H or Wp > W: |
|
x = x[:, :H, :W, :].contiguous() |
|
return x |
|
|
|
|
|
class CommonMLP(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
mlp_dim: int, |
|
act: Type[nn.Module] = nn.GELU, |
|
) -> None: |
|
super().__init__() |
|
self.lin1 = nn.Linear(embedding_dim, mlp_dim) |
|
self.lin2 = nn.Linear(mlp_dim, embedding_dim) |
|
self.act = act() |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
return self.lin2(self.act(self.lin1(x))) |
|
|
|
|
|
class LayerNorm2d(nn.Module): |
|
def __init__(self, num_channels: int, eps: float = 1e-6) -> None: |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(num_channels)) |
|
self.bias = nn.Parameter(torch.zeros(num_channels)) |
|
self.eps = eps |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
u = x.mean(1, keepdim=True) |
|
s = (x - u).pow(2).mean(1, keepdim=True) |
|
x = (x - u) / torch.sqrt(s + self.eps) |
|
x = self.weight[:, None, None] * x + self.bias[:, None, None] |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
""" |
|
An attention layer that allows for downscaling the size of the embedding |
|
after projection to queries, keys, and values. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
downsample_rate: int = 1, |
|
) -> None: |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.internal_dim = embedding_dim // downsample_rate |
|
self.num_heads = num_heads |
|
assert ( |
|
self.internal_dim % num_heads == 0 |
|
), "num_heads must divide embedding_dim." |
|
|
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim) |
|
self.k_proj = nn.Linear(embedding_dim, self.internal_dim) |
|
self.v_proj = nn.Linear(embedding_dim, self.internal_dim) |
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim) |
|
|
|
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor: |
|
b, n, c = x.shape |
|
x = x.reshape(b, n, num_heads, c // num_heads) |
|
return x.transpose(1, 2) |
|
|
|
def _recombine_heads(self, x: Tensor) -> Tensor: |
|
b, n_heads, n_tokens, c_per_head = x.shape |
|
x = x.transpose(1, 2) |
|
return x.reshape(b, n_tokens, n_heads * c_per_head) |
|
|
|
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor: |
|
|
|
q = self.q_proj(q) |
|
k = self.k_proj(k) |
|
v = self.v_proj(v) |
|
|
|
|
|
q = self._separate_heads(q, self.num_heads) |
|
k = self._separate_heads(k, self.num_heads) |
|
v = self._separate_heads(v, self.num_heads) |
|
|
|
|
|
_, _, _, c_per_head = q.shape |
|
attn = q @ k.permute(0, 1, 3, 2) |
|
attn = attn / math.sqrt(c_per_head) |
|
attn = torch.softmax(attn, dim=-1) |
|
|
|
|
|
out = attn @ v |
|
out = self._recombine_heads(out) |
|
out = self.out_proj(out) |
|
|
|
return out |
|
|
|
|
|
class TwoWayTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
depth: int, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
) -> None: |
|
""" |
|
A transformer decoder that attends to an input image using |
|
queries whose positional embedding is supplied. |
|
|
|
Args: |
|
depth (int): number of layers in the transformer |
|
embedding_dim (int): the channel dimension for the input embeddings |
|
num_heads (int): the number of heads for multihead attention. Must |
|
divide embedding_dim |
|
mlp_dim (int): the channel dimension internal to the MLP block |
|
activation (nn.Module): the activation to use in the MLP block |
|
""" |
|
super().__init__() |
|
self.depth = depth |
|
self.embedding_dim = embedding_dim |
|
self.num_heads = num_heads |
|
self.mlp_dim = mlp_dim |
|
self.layers = nn.ModuleList() |
|
|
|
for i in range(depth): |
|
self.layers.append( |
|
TwoWayAttentionBlock( |
|
embedding_dim=embedding_dim, |
|
num_heads=num_heads, |
|
mlp_dim=mlp_dim, |
|
activation=activation, |
|
attention_downsample_rate=attention_downsample_rate, |
|
skip_first_layer_pe=(i == 0), |
|
) |
|
) |
|
|
|
self.final_attn_token_to_image = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
self.norm_final_attn = nn.LayerNorm(embedding_dim) |
|
|
|
def forward( |
|
self, |
|
image_embedding: Tensor, |
|
image_pe: Tensor, |
|
point_embedding: Tensor, |
|
) -> Tuple[Tensor, Tensor]: |
|
""" |
|
Args: |
|
image_embedding (torch.Tensor): image to attend to. Should be shape |
|
B x embedding_dim x h x w for any h and w. |
|
image_pe (torch.Tensor): the positional encoding to add to the image. Must |
|
have the same shape as image_embedding. |
|
point_embedding (torch.Tensor): the embedding to add to the query points. |
|
Must have shape B x N_points x embedding_dim for any N_points. |
|
|
|
Returns: |
|
torch.Tensor: the processed point_embedding |
|
torch.Tensor: the processed image_embedding |
|
""" |
|
|
|
bs, c, h, w = image_embedding.shape |
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1) |
|
image_pe = image_pe.flatten(2).permute(0, 2, 1) |
|
|
|
|
|
queries = point_embedding |
|
keys = image_embedding |
|
|
|
|
|
for layer in self.layers: |
|
queries, keys = layer( |
|
queries=queries, |
|
keys=keys, |
|
query_pe=point_embedding, |
|
key_pe=image_pe, |
|
) |
|
|
|
|
|
q = queries + point_embedding |
|
k = keys + image_pe |
|
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm_final_attn(queries) |
|
|
|
return queries, keys |
|
|
|
|
|
class TwoWayAttentionBlock(nn.Module): |
|
def __init__( |
|
self, |
|
embedding_dim: int, |
|
num_heads: int, |
|
mlp_dim: int = 2048, |
|
activation: Type[nn.Module] = nn.ReLU, |
|
attention_downsample_rate: int = 2, |
|
skip_first_layer_pe: bool = False, |
|
) -> None: |
|
""" |
|
A transformer block with four layers: (1) self-attention of sparse |
|
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp |
|
block on sparse inputs, and (4) cross attention of dense inputs to sparse |
|
inputs. |
|
|
|
Arguments: |
|
embedding_dim (int): the channel dimension of the embeddings |
|
num_heads (int): the number of heads in the attention layers |
|
mlp_dim (int): the hidden dimension of the mlp block |
|
activation (nn.Module): the activation of the mlp block |
|
skip_first_layer_pe (bool): skip the PE on the first layer |
|
""" |
|
super().__init__() |
|
self.self_attn = Attention(embedding_dim, num_heads) |
|
self.norm1 = nn.LayerNorm(embedding_dim) |
|
|
|
self.cross_attn_token_to_image = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
self.norm2 = nn.LayerNorm(embedding_dim) |
|
|
|
self.mlp = CommonMLP(embedding_dim, mlp_dim, activation) |
|
self.norm3 = nn.LayerNorm(embedding_dim) |
|
|
|
self.norm4 = nn.LayerNorm(embedding_dim) |
|
self.cross_attn_image_to_token = Attention( |
|
embedding_dim, num_heads, downsample_rate=attention_downsample_rate |
|
) |
|
|
|
self.skip_first_layer_pe = skip_first_layer_pe |
|
|
|
def forward( |
|
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor |
|
) -> Tuple[Tensor, Tensor]: |
|
|
|
if self.skip_first_layer_pe: |
|
queries = self.self_attn(q=queries, k=queries, v=queries) |
|
else: |
|
q = queries + query_pe |
|
attn_out = self.self_attn(q=q, k=q, v=queries) |
|
queries = queries + attn_out |
|
queries = self.norm1(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys) |
|
queries = queries + attn_out |
|
queries = self.norm2(queries) |
|
|
|
|
|
mlp_out = self.mlp(queries) |
|
queries = queries + mlp_out |
|
queries = self.norm3(queries) |
|
|
|
|
|
q = queries + query_pe |
|
k = keys + key_pe |
|
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries) |
|
keys = keys + attn_out |
|
keys = self.norm4(keys) |
|
|
|
return queries, keys |
|
|
|
|
|
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Get relative positional embeddings according to the relative positions of |
|
query and key sizes. |
|
Args: |
|
q_size (int): size of query q. |
|
k_size (int): size of key k. |
|
rel_pos (Tensor): relative position embeddings (L, C). |
|
|
|
Returns: |
|
Extracted positional embeddings according to relative positions. |
|
""" |
|
max_rel_dist = int(2 * max(q_size, k_size) - 1) |
|
|
|
if rel_pos.shape[0] != max_rel_dist: |
|
|
|
rel_pos_resized = F.interpolate( |
|
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), |
|
size=max_rel_dist, |
|
mode="linear", |
|
) |
|
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) |
|
else: |
|
rel_pos_resized = rel_pos |
|
|
|
|
|
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) |
|
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) |
|
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) |
|
|
|
return rel_pos_resized[relative_coords.long()] |
|
|
|
|
|
def add_decomposed_rel_pos( |
|
attn: torch.Tensor, |
|
q: torch.Tensor, |
|
rel_pos_h: torch.Tensor, |
|
rel_pos_w: torch.Tensor, |
|
q_size: Tuple[int, int], |
|
k_size: Tuple[int, int], |
|
) -> torch.Tensor: |
|
""" |
|
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. |
|
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 |
|
Args: |
|
attn (Tensor): attention map. |
|
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). |
|
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. |
|
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. |
|
q_size (Tuple): spatial sequence size of query q with (q_h, q_w). |
|
k_size (Tuple): spatial sequence size of key k with (k_h, k_w). |
|
|
|
Returns: |
|
attn (Tensor): attention map with added relative positional embeddings. |
|
""" |
|
q_h, q_w = q_size |
|
k_h, k_w = k_size |
|
Rh = get_rel_pos(q_h, k_h, rel_pos_h) |
|
Rw = get_rel_pos(q_w, k_w, rel_pos_w) |
|
|
|
B, _, dim = q.shape |
|
r_q = q.reshape(B, q_h, q_w, dim) |
|
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) |
|
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) |
|
|
|
attn = ( |
|
attn.view(B, q_h, q_w, k_h, k_w) |
|
+ rel_h[:, :, :, :, None] |
|
+ rel_w[:, :, :, None, :] |
|
).view(B, q_h * q_w, k_h * k_w) |
|
|
|
return attn |
|
|
|
|
|
class ImageEncoderViTAttention(nn.Module): |
|
"""Multi-head Attention block with relative position embeddings.""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int = 8, |
|
qkv_bias: bool = True, |
|
use_rel_pos: bool = False, |
|
rel_pos_zero_init: bool = True, |
|
input_size: Optional[Tuple[int, int]] = None, |
|
) -> None: |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative |
|
positional parameter size. |
|
""" |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = head_dim**-0.5 |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
self.use_rel_pos = use_rel_pos |
|
if self.use_rel_pos: |
|
assert ( |
|
input_size is not None |
|
), "Input size must be provided if using relative positional encoding." |
|
|
|
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) |
|
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
B, H, W, _ = x.shape |
|
|
|
qkv = ( |
|
self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
) |
|
|
|
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) |
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
|
|
if self.use_rel_pos: |
|
attn = add_decomposed_rel_pos( |
|
attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W) |
|
) |
|
|
|
attn = attn.softmax(dim=-1) |
|
x = ( |
|
(attn @ v) |
|
.view(B, self.num_heads, H, W, -1) |
|
.permute(0, 2, 3, 1, 4) |
|
.reshape(B, H, W, -1) |
|
) |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
Image to Patch Embedding. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
kernel_size: Tuple[int, int] = (16, 16), |
|
stride: Tuple[int, int] = (16, 16), |
|
padding: Tuple[int, int] = (0, 0), |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
) -> None: |
|
""" |
|
Args: |
|
kernel_size (Tuple): kernel size of the projection layer. |
|
stride (Tuple): stride of the projection layer. |
|
padding (Tuple): padding size of the projection layer. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
""" |
|
super().__init__() |
|
|
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.proj(x) |
|
|
|
x = x.permute(0, 2, 3, 1) |
|
return x |
|
|
|
|
|
class ImageEncoderViTBlock(nn.Module): |
|
"""Transformer blocks with support of window attention and residual propagation blocks""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
mlp_ratio: float = 4.0, |
|
qkv_bias: bool = True, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
act_layer: Type[nn.Module] = nn.GELU, |
|
use_rel_pos: bool = False, |
|
rel_pos_zero_init: bool = True, |
|
window_size: int = 0, |
|
input_size: Optional[Tuple[int, int]] = None, |
|
) -> None: |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. If it equals 0, then |
|
use global attention. |
|
input_size (tuple(int, int) or None): Input resolution for calculating the relative |
|
positional parameter size. |
|
""" |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = ImageEncoderViTAttention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
input_size=input_size if window_size == 0 else (window_size, window_size), |
|
) |
|
|
|
self.norm2 = norm_layer(dim) |
|
self.mlp = CommonMLP( |
|
embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer |
|
) |
|
|
|
self.window_size = window_size |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
shortcut = x |
|
x = self.norm1(x) |
|
|
|
if self.window_size > 0: |
|
H, W = x.shape[1], x.shape[2] |
|
x, pad_hw = window_partition(x, self.window_size) |
|
|
|
x = self.attn(x) |
|
|
|
if self.window_size > 0: |
|
x = window_unpartition(x, self.window_size, pad_hw, (H, W)) |
|
|
|
x = shortcut + x |
|
x = x + self.mlp(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
class ImageEncoderViT(nn.Module): |
|
def __init__( |
|
self, |
|
img_size: int = 1024, |
|
patch_size: int = 16, |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
depth: int = 12, |
|
num_heads: int = 12, |
|
mlp_ratio: float = 4.0, |
|
out_chans: int = 256, |
|
qkv_bias: bool = True, |
|
norm_layer: Type[nn.Module] = nn.LayerNorm, |
|
act_layer: Type[nn.Module] = nn.GELU, |
|
use_abs_pos: bool = True, |
|
use_rel_pos: bool = False, |
|
rel_pos_zero_init: bool = True, |
|
window_size: int = 0, |
|
global_attn_indexes: Tuple[int, ...] = (), |
|
) -> None: |
|
""" |
|
Args: |
|
img_size (int): Input image size. |
|
patch_size (int): Patch size. |
|
in_chans (int): Number of input image channels. |
|
embed_dim (int): Patch embedding dimension. |
|
depth (int): Depth of ViT. |
|
num_heads (int): Number of attention heads in each ViT block. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. |
|
norm_layer (nn.Module): Normalization layer. |
|
act_layer (nn.Module): Activation layer. |
|
use_abs_pos (bool): If True, use absolute positional embeddings. |
|
use_rel_pos (bool): If True, add relative positional embeddings to the attention map. |
|
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. |
|
window_size (int): Window size for window attention blocks. |
|
global_attn_indexes (list): Indexes for blocks using global attention. |
|
""" |
|
super().__init__() |
|
self.img_size = img_size |
|
self.embed_dim = embed_dim |
|
self.out_chans = out_chans |
|
|
|
self.patch_embed = PatchEmbed( |
|
kernel_size=(patch_size, patch_size), |
|
stride=(patch_size, patch_size), |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
) |
|
|
|
self.pos_embed: Optional[nn.Parameter] = None |
|
if use_abs_pos: |
|
|
|
self.pos_embed = nn.Parameter( |
|
torch.zeros( |
|
1, img_size // patch_size, img_size // patch_size, embed_dim |
|
) |
|
) |
|
|
|
self.blocks = nn.ModuleList() |
|
for i in range(depth): |
|
block = ImageEncoderViTBlock( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
use_rel_pos=use_rel_pos, |
|
rel_pos_zero_init=rel_pos_zero_init, |
|
window_size=window_size if i not in global_attn_indexes else 0, |
|
input_size=(img_size // patch_size, img_size // patch_size), |
|
) |
|
self.blocks.append(block) |
|
|
|
self.neck = nn.Sequential( |
|
nn.Conv2d( |
|
embed_dim, |
|
out_chans, |
|
kernel_size=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(out_chans), |
|
nn.Conv2d( |
|
out_chans, |
|
out_chans, |
|
kernel_size=3, |
|
padding=1, |
|
bias=False, |
|
), |
|
LayerNorm2d(out_chans), |
|
) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.patch_embed(x) |
|
if self.pos_embed is not None: |
|
x = x + self.pos_embed |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
dtype = x.dtype |
|
if dtype == torch.float16: |
|
with torch.autocast(device_type="cuda", dtype=torch.float32): |
|
x = self.neck(x.permute(0, 3, 1, 2)) |
|
x = x.to(dtype) |
|
else: |
|
x = self.neck(x.permute(0, 3, 1, 2)) |
|
return x |
|
|
|
|
|
class PositionEmbeddingRandom(nn.Module): |
|
""" |
|
Positional encoding using random spatial frequencies. |
|
""" |
|
|
|
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None: |
|
super().__init__() |
|
if scale is None or scale <= 0.0: |
|
scale = 1.0 |
|
self.register_buffer( |
|
"positional_encoding_gaussian_matrix", |
|
scale * torch.randn((2, num_pos_feats)), |
|
) |
|
|
|
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor: |
|
"""Positionally encode points that are normalized to [0,1].""" |
|
|
|
coords = 2 * coords - 1 |
|
|
|
if coords.dtype != self.positional_encoding_gaussian_matrix.dtype: |
|
coords = coords.to(self.positional_encoding_gaussian_matrix.dtype) |
|
|
|
coords = coords @ self.positional_encoding_gaussian_matrix |
|
coords = 2 * np.pi * coords |
|
|
|
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1) |
|
|
|
def forward(self, size: Tuple[int, int]) -> torch.Tensor: |
|
"""Generate positional encoding for a grid of the specified size.""" |
|
h, w = size |
|
device: Any = self.positional_encoding_gaussian_matrix.device |
|
grid = torch.ones( |
|
(h, w), device=device, dtype=self.positional_encoding_gaussian_matrix.dtype |
|
) |
|
y_embed = grid.cumsum(dim=0) - 0.5 |
|
x_embed = grid.cumsum(dim=1) - 0.5 |
|
y_embed = y_embed / h |
|
x_embed = x_embed / w |
|
|
|
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1)) |
|
return pe.permute(2, 0, 1) |
|
|
|
def forward_with_coords( |
|
self, coords_input: torch.Tensor, image_size: Tuple[int, int] |
|
) -> torch.Tensor: |
|
"""Positionally encode points that are not normalized to [0,1].""" |
|
coords = coords_input.clone() |
|
coords[:, :, 0] = coords[:, :, 0] / image_size[1] |
|
coords[:, :, 1] = coords[:, :, 1] / image_size[0] |
|
return self._pe_encoding(coords.to(torch.float)) |
|
|
|
|
|
class PromptEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
image_embedding_size: Tuple[int, int], |
|
input_image_size: Tuple[int, int], |
|
mask_in_chans: int, |
|
activation: Type[nn.Module] = nn.GELU, |
|
) -> None: |
|
""" |
|
Encodes prompts for input to SAM's mask decoder. |
|
|
|
Arguments: |
|
embed_dim (int): The prompts' embedding dimension |
|
image_embedding_size (tuple(int, int)): The spatial size of the |
|
image embedding, as (H, W). |
|
input_image_size (int): The padded size of the image as input |
|
to the image encoder, as (H, W). |
|
mask_in_chans (int): The number of hidden channels used for |
|
encoding input masks. |
|
activation (nn.Module): The activation to use when encoding |
|
input masks. |
|
""" |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.input_image_size = input_image_size |
|
self.image_embedding_size = image_embedding_size |
|
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2) |
|
|
|
self.num_point_embeddings: int = 4 |
|
point_embeddings = [ |
|
nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings) |
|
] |
|
self.point_embeddings = nn.ModuleList(point_embeddings) |
|
self.not_a_point_embed = nn.Embedding(1, embed_dim) |
|
|
|
self.mask_input_size = ( |
|
4 * image_embedding_size[0], |
|
4 * image_embedding_size[1], |
|
) |
|
self.mask_downscaling = nn.Sequential( |
|
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2), |
|
LayerNorm2d(mask_in_chans // 4), |
|
activation(), |
|
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2), |
|
LayerNorm2d(mask_in_chans), |
|
activation(), |
|
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1), |
|
) |
|
self.no_mask_embed = nn.Embedding(1, embed_dim) |
|
|
|
def get_dense_pe(self) -> torch.Tensor: |
|
""" |
|
Returns the positional encoding used to encode point prompts, |
|
applied to a dense set of points the shape of the image encoding. |
|
|
|
Returns: |
|
torch.Tensor: Positional encoding with shape |
|
1x(embed_dim)x(embedding_h)x(embedding_w) |
|
""" |
|
return self.pe_layer(self.image_embedding_size).unsqueeze(0) |
|
|
|
def _embed_points( |
|
self, |
|
points: torch.Tensor, |
|
labels: torch.Tensor, |
|
pad: bool, |
|
) -> torch.Tensor: |
|
"""Embeds point prompts.""" |
|
points = points + 0.5 |
|
if pad: |
|
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device) |
|
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device) |
|
points = torch.cat([points, padding_point], dim=1) |
|
labels = torch.cat([labels, padding_label], dim=1) |
|
point_embedding = self.pe_layer.forward_with_coords( |
|
points, self.input_image_size |
|
) |
|
point_embedding[labels == -1] = 0.0 |
|
point_embedding[labels == -1] += self.not_a_point_embed.weight |
|
point_embedding[labels == 0] += self.point_embeddings[0].weight |
|
point_embedding[labels == 1] += self.point_embeddings[1].weight |
|
return point_embedding |
|
|
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor: |
|
"""Embeds box prompts.""" |
|
boxes = boxes + 0.5 |
|
coords = boxes.reshape(-1, 2, 2) |
|
corner_embedding = self.pe_layer.forward_with_coords( |
|
coords, self.input_image_size |
|
) |
|
corner_embedding[:, 0, :] += self.point_embeddings[2].weight |
|
corner_embedding[:, 1, :] += self.point_embeddings[3].weight |
|
return corner_embedding |
|
|
|
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor: |
|
"""Embeds mask inputs.""" |
|
mask_embedding = self.mask_downscaling(masks) |
|
return mask_embedding |
|
|
|
def _get_batch_size( |
|
self, |
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
boxes: Optional[torch.Tensor], |
|
masks: Optional[torch.Tensor], |
|
text_embeds: Optional[torch.Tensor], |
|
) -> int: |
|
""" |
|
Gets the batch size of the output given the batch size of the input prompts. |
|
""" |
|
if points is not None: |
|
return points[0].shape[0] |
|
elif boxes is not None: |
|
return boxes.shape[0] |
|
elif masks is not None: |
|
return masks.shape[0] |
|
elif text_embeds is not None: |
|
return text_embeds.shape[0] |
|
else: |
|
return 1 |
|
|
|
def _get_device(self) -> torch.device: |
|
return self.point_embeddings[0].weight.device |
|
|
|
def forward( |
|
self, |
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]], |
|
boxes: Optional[torch.Tensor], |
|
masks: Optional[torch.Tensor], |
|
text_embeds: Optional[torch.Tensor], |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Embeds different types of prompts, returning both sparse and dense |
|
embeddings. |
|
|
|
Arguments: |
|
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates |
|
and labels to embed. |
|
boxes (torch.Tensor or none): boxes to embed |
|
masks (torch.Tensor or none): masks to embed |
|
|
|
Returns: |
|
torch.Tensor: sparse embeddings for the points and boxes, with shape |
|
BxNx(embed_dim), where N is determined by the number of input points |
|
and boxes. |
|
torch.Tensor: dense embeddings for the masks, in the shape |
|
Bx(embed_dim)x(embed_H)x(embed_W) |
|
""" |
|
bs = self._get_batch_size(points, boxes, masks, text_embeds) |
|
sparse_embeddings = torch.empty( |
|
(bs, 0, self.embed_dim), device=self._get_device() |
|
) |
|
if points is not None: |
|
coords, labels = points |
|
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None)) |
|
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1) |
|
if boxes is not None: |
|
box_embeddings = self._embed_boxes(boxes) |
|
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1) |
|
|
|
if text_embeds is not None: |
|
sparse_embeddings = torch.cat([sparse_embeddings, text_embeds], dim=1) |
|
|
|
if masks is not None: |
|
dense_embeddings = self._embed_masks(masks) |
|
else: |
|
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand( |
|
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1] |
|
) |
|
|
|
return sparse_embeddings, dense_embeddings |
|
|
|
|
|
class MaskDecoderMLP(nn.Module): |
|
def __init__( |
|
self, |
|
input_dim: int, |
|
hidden_dim: int, |
|
output_dim: int, |
|
num_layers: int, |
|
sigmoid_output: bool = False, |
|
) -> None: |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList( |
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) |
|
) |
|
self.sigmoid_output = sigmoid_output |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
if self.sigmoid_output: |
|
x = F.sigmoid(x) |
|
return x |
|
|
|
|
|
class MaskDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
transformer_dim: int, |
|
transformer: nn.Module, |
|
num_multimask_outputs: int = 3, |
|
activation: Type[nn.Module] = nn.GELU, |
|
iou_head_depth: int = 3, |
|
iou_head_hidden_dim: int = 256, |
|
) -> None: |
|
""" |
|
Predicts masks given an image and prompt embeddings, using a |
|
transformer architecture. |
|
|
|
Arguments: |
|
transformer_dim (int): the channel dimension of the transformer |
|
transformer (nn.Module): the transformer used to predict masks |
|
num_multimask_outputs (int): the number of masks to predict |
|
when disambiguating masks |
|
activation (nn.Module): the type of activation to use when |
|
upscaling masks |
|
iou_head_depth (int): the depth of the MLP used to predict |
|
mask quality |
|
iou_head_hidden_dim (int): the hidden dimension of the MLP |
|
used to predict mask quality |
|
""" |
|
super().__init__() |
|
self.transformer_dim = transformer_dim |
|
self.transformer = transformer |
|
|
|
self.num_multimask_outputs = num_multimask_outputs |
|
|
|
self.iou_token = nn.Embedding(1, transformer_dim) |
|
self.num_mask_tokens = num_multimask_outputs + 1 |
|
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) |
|
|
|
self.output_upscaling = nn.Sequential( |
|
nn.ConvTranspose2d( |
|
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 |
|
), |
|
LayerNorm2d(transformer_dim // 4), |
|
activation(), |
|
nn.ConvTranspose2d( |
|
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 |
|
), |
|
activation(), |
|
) |
|
self.output_hypernetworks_mlps = nn.ModuleList( |
|
[ |
|
MaskDecoderMLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) |
|
for i in range(self.num_mask_tokens) |
|
] |
|
) |
|
|
|
self.iou_prediction_head = MaskDecoderMLP( |
|
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth |
|
) |
|
|
|
def forward( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
multimask_output: bool, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Predict masks given image and prompt embeddings. |
|
|
|
Arguments: |
|
image_embeddings (torch.Tensor): the embeddings from the image encoder |
|
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings |
|
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes |
|
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs |
|
multimask_output (bool): Whether to return multiple masks or a single |
|
mask. |
|
|
|
Returns: |
|
torch.Tensor: batched predicted masks |
|
torch.Tensor: batched predictions of mask quality |
|
""" |
|
masks, iou_pred = self.predict_masks( |
|
image_embeddings=image_embeddings, |
|
image_pe=image_pe, |
|
sparse_prompt_embeddings=sparse_prompt_embeddings, |
|
dense_prompt_embeddings=dense_prompt_embeddings, |
|
) |
|
|
|
|
|
if multimask_output: |
|
mask_slice = slice(1, None) |
|
else: |
|
mask_slice = slice(0, 1) |
|
masks = masks[:, mask_slice, :, :] |
|
iou_pred = iou_pred[:, mask_slice] |
|
|
|
|
|
return masks, iou_pred |
|
|
|
def predict_masks( |
|
self, |
|
image_embeddings: torch.Tensor, |
|
image_pe: torch.Tensor, |
|
sparse_prompt_embeddings: torch.Tensor, |
|
dense_prompt_embeddings: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Predicts masks. See 'forward' for more details.""" |
|
|
|
output_tokens = torch.cat( |
|
[self.iou_token.weight, self.mask_tokens.weight], dim=0 |
|
) |
|
output_tokens = output_tokens.unsqueeze(0).expand( |
|
sparse_prompt_embeddings.size(0), -1, -1 |
|
) |
|
|
|
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) |
|
|
|
|
|
|
|
|
|
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) |
|
src = src + dense_prompt_embeddings |
|
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) |
|
b, c, h, w = src.shape |
|
|
|
|
|
hs, src = self.transformer(src, pos_src, tokens) |
|
iou_token_out = hs[:, 0, :] |
|
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :] |
|
|
|
|
|
src = src.transpose(1, 2).view(b, c, h, w) |
|
upscaled_embedding = self.output_upscaling(src) |
|
hyper_in_list: List[torch.Tensor] = [] |
|
for i in range(self.num_mask_tokens): |
|
hyper_in_list.append( |
|
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) |
|
) |
|
hyper_in = torch.stack(hyper_in_list, dim=1) |
|
b, c, h, w = upscaled_embedding.shape |
|
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view( |
|
b, self.num_mask_tokens, h, w |
|
) |
|
|
|
|
|
iou_pred = self.iou_prediction_head(iou_token_out) |
|
|
|
return masks, iou_pred |
|
|
|
|
|
class Sam(nn.Module): |
|
mask_threshold: float = 0.0 |
|
image_format: str = "RGB" |
|
|
|
def __init__( |
|
self, |
|
image_encoder: ImageEncoderViT, |
|
prompt_encoder: PromptEncoder, |
|
mask_decoder: MaskDecoder, |
|
pixel_mean: List[float] = [123.675, 116.28, 103.53], |
|
pixel_std: List[float] = [58.395, 57.12, 57.375], |
|
) -> None: |
|
""" |
|
SAM predicts object masks from an image and input prompts. |
|
|
|
Arguments: |
|
image_encoder (ImageEncoderViT): The backbone used to encode the |
|
image into image embeddings that allow for efficient mask prediction. |
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts. |
|
mask_decoder (MaskDecoder): Predicts masks from the image embeddings |
|
and encoded prompts. |
|
pixel_mean (list(float)): Mean values for normalizing pixels in the input image. |
|
pixel_std (list(float)): Std values for normalizing pixels in the input image. |
|
""" |
|
super().__init__() |
|
self.image_encoder = image_encoder |
|
self.prompt_encoder = prompt_encoder |
|
self.mask_decoder = mask_decoder |
|
self.register_buffer( |
|
"pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False |
|
) |
|
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) |
|
|
|
@property |
|
def device(self) -> Any: |
|
return self.pixel_mean.device |
|
|
|
@torch.no_grad() |
|
def forward( |
|
self, |
|
batched_input: List[Dict[str, Any]], |
|
multimask_output: bool, |
|
) -> List[Dict[str, torch.Tensor]]: |
|
""" |
|
Predicts masks end-to-end from provided images and prompts. |
|
If prompts are not known in advance, using SamPredictor is |
|
recommended over calling the model directly. |
|
|
|
Arguments: |
|
batched_input (list(dict)): A list over input images, each a |
|
dictionary with the following keys. A prompt key can be |
|
excluded if it is not present. |
|
'image': The image as a torch tensor in 3xHxW format, |
|
already transformed for input to the model. |
|
'original_size': (tuple(int, int)) The original size of |
|
the image before transformation, as (H, W). |
|
'point_coords': (torch.Tensor) Batched point prompts for |
|
this image, with shape BxNx2. Already transformed to the |
|
input frame of the model. |
|
'point_labels': (torch.Tensor) Batched labels for point prompts, |
|
with shape BxN. |
|
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4. |
|
Already transformed to the input frame of the model. |
|
'mask_inputs': (torch.Tensor) Batched mask inputs to the model, |
|
in the form Bx1xHxW. |
|
multimask_output (bool): Whether the model should predict multiple |
|
disambiguating masks, or return a single mask. |
|
|
|
Returns: |
|
(list(dict)): A list over input images, where each element is |
|
as dictionary with the following keys. |
|
'masks': (torch.Tensor) Batched binary mask predictions, |
|
with shape BxCxHxW, where B is the number of input prompts, |
|
C is determined by multimask_output, and (H, W) is the |
|
original size of the image. |
|
'iou_predictions': (torch.Tensor) The model's predictions |
|
of mask quality, in shape BxC. |
|
'low_res_logits': (torch.Tensor) Low resolution logits with |
|
shape BxCxHxW, where H=W=256. Can be passed as mask input |
|
to subsequent iterations of prediction. |
|
""" |
|
input_images = torch.stack( |
|
[self.preprocess(x["image"]) for x in batched_input], dim=0 |
|
) |
|
image_embeddings = self.image_encoder(input_images) |
|
|
|
outputs = [] |
|
for image_record, curr_embedding in zip(batched_input, image_embeddings): |
|
if "point_coords" in image_record: |
|
points = (image_record["point_coords"], image_record["point_labels"]) |
|
else: |
|
points = None |
|
sparse_embeddings, dense_embeddings = self.prompt_encoder( |
|
points=points, |
|
boxes=image_record.get("boxes", None), |
|
masks=image_record.get("mask_inputs", None), |
|
) |
|
low_res_masks, iou_predictions = self.mask_decoder( |
|
image_embeddings=curr_embedding.unsqueeze(0), |
|
image_pe=self.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=multimask_output, |
|
) |
|
masks = self.postprocess_masks( |
|
low_res_masks, |
|
input_size=image_record["image"].shape[-2:], |
|
original_size=image_record["original_size"], |
|
) |
|
masks = masks > self.mask_threshold |
|
outputs.append( |
|
{ |
|
"masks": masks, |
|
"iou_predictions": iou_predictions, |
|
"low_res_logits": low_res_masks, |
|
} |
|
) |
|
return outputs |
|
|
|
def postprocess_masks( |
|
self, |
|
masks: torch.Tensor, |
|
input_size: Tuple[int, ...], |
|
original_size: Tuple[int, ...], |
|
) -> torch.Tensor: |
|
""" |
|
Remove padding and upscale masks to the original image size. |
|
|
|
Arguments: |
|
masks (torch.Tensor): Batched masks from the mask_decoder, |
|
in BxCxHxW format. |
|
input_size (tuple(int, int)): The size of the image input to the |
|
model, in (H, W) format. Used to remove padding. |
|
original_size (tuple(int, int)): The original size of the image |
|
before resizing for input to the model, in (H, W) format. |
|
|
|
Returns: |
|
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W) |
|
is given by original_size. |
|
""" |
|
|
|
dtype = masks.dtype |
|
|
|
masks = F.interpolate( |
|
masks.float(), |
|
(self.image_encoder.img_size, self.image_encoder.img_size), |
|
mode="bilinear", |
|
align_corners=False, |
|
) |
|
|
|
masks = masks[..., : input_size[0], : input_size[1]] |
|
masks = F.interpolate( |
|
masks, original_size, mode="bilinear", align_corners=False |
|
) |
|
return masks |
|
|
|
def preprocess(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Normalize pixel values and pad to a square input.""" |
|
|
|
x = (x - self.pixel_mean) / self.pixel_std |
|
|
|
|
|
h, w = x.shape[-2:] |
|
padh = self.image_encoder.img_size - h |
|
padw = self.image_encoder.img_size - w |
|
x = F.pad(x, (0, padw, 0, padh)) |
|
return x |